* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__from(X) -> cons(mark(X),from(s(X)))
            a__from(X) -> from(X)
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(from(X)) -> a__from(mark(X))
            mark(nil()) -> nil()
            mark(s(X)) -> s(mark(X))
        - Signature:
            {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__first,a__from,mark} and constructors {0,cons,first
            ,from,nil,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__from(X) -> cons(mark(X),from(s(X)))
            a__from(X) -> from(X)
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(from(X)) -> a__from(mark(X))
            mark(nil()) -> nil()
            mark(s(X)) -> s(mark(X))
        - Signature:
            {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__first,a__from,mark} and constructors {0,cons,first
            ,from,nil,s}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          mark(x){x -> cons(x,y)} =
            mark(cons(x,y)) ->^+ cons(mark(x),y)
              = C[mark(x) = mark(x){}]

** Step 1.b:1: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__from(X) -> cons(mark(X),from(s(X)))
            a__from(X) -> from(X)
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(from(X)) -> a__from(mark(X))
            mark(nil()) -> nil()
            mark(s(X)) -> s(mark(X))
        - Signature:
            {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__first,a__from,mark} and constructors {0,cons,first
            ,from,nil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__first) = {1,2},
            uargs(a__from) = {1},
            uargs(cons) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [1]                  
            p(a__first) = [1] x1 + [1] x2 + [0]
             p(a__from) = [1] x1 + [0]         
                p(cons) = [1] x1 + [0]         
               p(first) = [1] x1 + [0]         
                p(from) = [0]                  
                p(mark) = [0]                  
                 p(nil) = [0]                  
                   p(s) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
          a__first(0(),X) = [1] X + [1]
                          > [0]        
                          = nil()      
          
          
          Following rules are (at-least) weakly oriented:
                   a__first(X1,X2) =  [1] X1 + [1] X2 + [0]      
                                   >= [1] X1 + [0]               
                                   =  first(X1,X2)               
          
          a__first(s(X),cons(Y,Z)) =  [1] X + [1] Y + [0]        
                                   >= [0]                        
                                   =  cons(mark(Y),first(X,Z))   
          
                        a__from(X) =  [1] X + [0]                
                                   >= [0]                        
                                   =  cons(mark(X),from(s(X)))   
          
                        a__from(X) =  [1] X + [0]                
                                   >= [0]                        
                                   =  from(X)                    
          
                         mark(0()) =  [0]                        
                                   >= [1]                        
                                   =  0()                        
          
                 mark(cons(X1,X2)) =  [0]                        
                                   >= [0]                        
                                   =  cons(mark(X1),X2)          
          
                mark(first(X1,X2)) =  [0]                        
                                   >= [0]                        
                                   =  a__first(mark(X1),mark(X2))
          
                     mark(from(X)) =  [0]                        
                                   >= [0]                        
                                   =  a__from(mark(X))           
          
                       mark(nil()) =  [0]                        
                                   >= [0]                        
                                   =  nil()                      
          
                        mark(s(X)) =  [0]                        
                                   >= [0]                        
                                   =  s(mark(X))                 
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:2: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__first(X1,X2) -> first(X1,X2)
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__from(X) -> cons(mark(X),from(s(X)))
            a__from(X) -> from(X)
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(from(X)) -> a__from(mark(X))
            mark(nil()) -> nil()
            mark(s(X)) -> s(mark(X))
        - Weak TRS:
            a__first(0(),X) -> nil()
        - Signature:
            {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__first,a__from,mark} and constructors {0,cons,first
            ,from,nil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__first) = {1,2},
            uargs(a__from) = {1},
            uargs(cons) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [11]                 
            p(a__first) = [1] x1 + [1] x2 + [5]
             p(a__from) = [1] x1 + [0]         
                p(cons) = [1] x1 + [0]         
               p(first) = [1] x1 + [0]         
                p(from) = [0]                  
                p(mark) = [0]                  
                 p(nil) = [0]                  
                   p(s) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
                   a__first(X1,X2) = [1] X1 + [1] X2 + [5]   
                                   > [1] X1 + [0]            
                                   = first(X1,X2)            
          
          a__first(s(X),cons(Y,Z)) = [1] X + [1] Y + [5]     
                                   > [0]                     
                                   = cons(mark(Y),first(X,Z))
          
          
          Following rules are (at-least) weakly oriented:
             a__first(0(),X) =  [1] X + [16]               
                             >= [0]                        
                             =  nil()                      
          
                  a__from(X) =  [1] X + [0]                
                             >= [0]                        
                             =  cons(mark(X),from(s(X)))   
          
                  a__from(X) =  [1] X + [0]                
                             >= [0]                        
                             =  from(X)                    
          
                   mark(0()) =  [0]                        
                             >= [11]                       
                             =  0()                        
          
           mark(cons(X1,X2)) =  [0]                        
                             >= [0]                        
                             =  cons(mark(X1),X2)          
          
          mark(first(X1,X2)) =  [0]                        
                             >= [5]                        
                             =  a__first(mark(X1),mark(X2))
          
               mark(from(X)) =  [0]                        
                             >= [0]                        
                             =  a__from(mark(X))           
          
                 mark(nil()) =  [0]                        
                             >= [0]                        
                             =  nil()                      
          
                  mark(s(X)) =  [0]                        
                             >= [0]                        
                             =  s(mark(X))                 
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:3: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__from(X) -> cons(mark(X),from(s(X)))
            a__from(X) -> from(X)
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(from(X)) -> a__from(mark(X))
            mark(nil()) -> nil()
            mark(s(X)) -> s(mark(X))
        - Weak TRS:
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        - Signature:
            {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__first,a__from,mark} and constructors {0,cons,first
            ,from,nil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__first) = {1,2},
            uargs(a__from) = {1},
            uargs(cons) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
            p(a__first) = [1] x1 + [1] x2 + [0]
             p(a__from) = [1] x1 + [1]         
                p(cons) = [1] x1 + [6]         
               p(first) = [1] x1 + [0]         
                p(from) = [0]                  
                p(mark) = [0]                  
                 p(nil) = [0]                  
                   p(s) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
          a__from(X) = [1] X + [1]
                     > [0]        
                     = from(X)    
          
          
          Following rules are (at-least) weakly oriented:
                   a__first(X1,X2) =  [1] X1 + [1] X2 + [0]      
                                   >= [1] X1 + [0]               
                                   =  first(X1,X2)               
          
                   a__first(0(),X) =  [1] X + [0]                
                                   >= [0]                        
                                   =  nil()                      
          
          a__first(s(X),cons(Y,Z)) =  [1] X + [1] Y + [6]        
                                   >= [6]                        
                                   =  cons(mark(Y),first(X,Z))   
          
                        a__from(X) =  [1] X + [1]                
                                   >= [6]                        
                                   =  cons(mark(X),from(s(X)))   
          
                         mark(0()) =  [0]                        
                                   >= [0]                        
                                   =  0()                        
          
                 mark(cons(X1,X2)) =  [0]                        
                                   >= [6]                        
                                   =  cons(mark(X1),X2)          
          
                mark(first(X1,X2)) =  [0]                        
                                   >= [0]                        
                                   =  a__first(mark(X1),mark(X2))
          
                     mark(from(X)) =  [0]                        
                                   >= [1]                        
                                   =  a__from(mark(X))           
          
                       mark(nil()) =  [0]                        
                                   >= [0]                        
                                   =  nil()                      
          
                        mark(s(X)) =  [0]                        
                                   >= [0]                        
                                   =  s(mark(X))                 
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:4: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__from(X) -> cons(mark(X),from(s(X)))
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(from(X)) -> a__from(mark(X))
            mark(nil()) -> nil()
            mark(s(X)) -> s(mark(X))
        - Weak TRS:
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__from(X) -> from(X)
        - Signature:
            {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__first,a__from,mark} and constructors {0,cons,first
            ,from,nil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__first) = {1,2},
            uargs(a__from) = {1},
            uargs(cons) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
            p(a__first) = [1] x1 + [1] x2 + [0]
             p(a__from) = [1] x1 + [1]         
                p(cons) = [1] x1 + [0]         
               p(first) = [1] x1 + [0]         
                p(from) = [1]                  
                p(mark) = [0]                  
                 p(nil) = [0]                  
                   p(s) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
          a__from(X) = [1] X + [1]             
                     > [0]                     
                     = cons(mark(X),from(s(X)))
          
          
          Following rules are (at-least) weakly oriented:
                   a__first(X1,X2) =  [1] X1 + [1] X2 + [0]      
                                   >= [1] X1 + [0]               
                                   =  first(X1,X2)               
          
                   a__first(0(),X) =  [1] X + [0]                
                                   >= [0]                        
                                   =  nil()                      
          
          a__first(s(X),cons(Y,Z)) =  [1] X + [1] Y + [0]        
                                   >= [0]                        
                                   =  cons(mark(Y),first(X,Z))   
          
                        a__from(X) =  [1] X + [1]                
                                   >= [1]                        
                                   =  from(X)                    
          
                         mark(0()) =  [0]                        
                                   >= [0]                        
                                   =  0()                        
          
                 mark(cons(X1,X2)) =  [0]                        
                                   >= [0]                        
                                   =  cons(mark(X1),X2)          
          
                mark(first(X1,X2)) =  [0]                        
                                   >= [0]                        
                                   =  a__first(mark(X1),mark(X2))
          
                     mark(from(X)) =  [0]                        
                                   >= [1]                        
                                   =  a__from(mark(X))           
          
                       mark(nil()) =  [0]                        
                                   >= [0]                        
                                   =  nil()                      
          
                        mark(s(X)) =  [0]                        
                                   >= [0]                        
                                   =  s(mark(X))                 
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:5: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(from(X)) -> a__from(mark(X))
            mark(nil()) -> nil()
            mark(s(X)) -> s(mark(X))
        - Weak TRS:
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__from(X) -> cons(mark(X),from(s(X)))
            a__from(X) -> from(X)
        - Signature:
            {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__first,a__from,mark} and constructors {0,cons,first
            ,from,nil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__first) = {1,2},
            uargs(a__from) = {1},
            uargs(cons) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [14]                 
            p(a__first) = [1] x1 + [1] x2 + [3]
             p(a__from) = [1] x1 + [6]         
                p(cons) = [1] x1 + [5]         
               p(first) = [1] x1 + [0]         
                p(from) = [6]                  
                p(mark) = [1]                  
                 p(nil) = [0]                  
                   p(s) = [1] x1 + [15]        
          
          Following rules are strictly oriented:
          mark(nil()) = [1]  
                      > [0]  
                      = nil()
          
          
          Following rules are (at-least) weakly oriented:
                   a__first(X1,X2) =  [1] X1 + [1] X2 + [3]      
                                   >= [1] X1 + [0]               
                                   =  first(X1,X2)               
          
                   a__first(0(),X) =  [1] X + [17]               
                                   >= [0]                        
                                   =  nil()                      
          
          a__first(s(X),cons(Y,Z)) =  [1] X + [1] Y + [23]       
                                   >= [6]                        
                                   =  cons(mark(Y),first(X,Z))   
          
                        a__from(X) =  [1] X + [6]                
                                   >= [6]                        
                                   =  cons(mark(X),from(s(X)))   
          
                        a__from(X) =  [1] X + [6]                
                                   >= [6]                        
                                   =  from(X)                    
          
                         mark(0()) =  [1]                        
                                   >= [14]                       
                                   =  0()                        
          
                 mark(cons(X1,X2)) =  [1]                        
                                   >= [6]                        
                                   =  cons(mark(X1),X2)          
          
                mark(first(X1,X2)) =  [1]                        
                                   >= [5]                        
                                   =  a__first(mark(X1),mark(X2))
          
                     mark(from(X)) =  [1]                        
                                   >= [7]                        
                                   =  a__from(mark(X))           
          
                        mark(s(X)) =  [1]                        
                                   >= [16]                       
                                   =  s(mark(X))                 
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:6: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(from(X)) -> a__from(mark(X))
            mark(s(X)) -> s(mark(X))
        - Weak TRS:
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__from(X) -> cons(mark(X),from(s(X)))
            a__from(X) -> from(X)
            mark(nil()) -> nil()
        - Signature:
            {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__first,a__from,mark} and constructors {0,cons,first
            ,from,nil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__first) = {1,2},
            uargs(a__from) = {1},
            uargs(cons) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                   
            p(a__first) = [1] x1 + [1] x2 + [14]
             p(a__from) = [1] x1 + [6]          
                p(cons) = [1] x1 + [5]          
               p(first) = [1] x1 + [1]          
                p(from) = [6]                   
                p(mark) = [1]                   
                 p(nil) = [1]                   
                   p(s) = [1] x1 + [0]          
          
          Following rules are strictly oriented:
          mark(0()) = [1]
                    > [0]
                    = 0()
          
          
          Following rules are (at-least) weakly oriented:
                   a__first(X1,X2) =  [1] X1 + [1] X2 + [14]     
                                   >= [1] X1 + [1]               
                                   =  first(X1,X2)               
          
                   a__first(0(),X) =  [1] X + [14]               
                                   >= [1]                        
                                   =  nil()                      
          
          a__first(s(X),cons(Y,Z)) =  [1] X + [1] Y + [19]       
                                   >= [6]                        
                                   =  cons(mark(Y),first(X,Z))   
          
                        a__from(X) =  [1] X + [6]                
                                   >= [6]                        
                                   =  cons(mark(X),from(s(X)))   
          
                        a__from(X) =  [1] X + [6]                
                                   >= [6]                        
                                   =  from(X)                    
          
                 mark(cons(X1,X2)) =  [1]                        
                                   >= [6]                        
                                   =  cons(mark(X1),X2)          
          
                mark(first(X1,X2)) =  [1]                        
                                   >= [16]                       
                                   =  a__first(mark(X1),mark(X2))
          
                     mark(from(X)) =  [1]                        
                                   >= [7]                        
                                   =  a__from(mark(X))           
          
                       mark(nil()) =  [1]                        
                                   >= [1]                        
                                   =  nil()                      
          
                        mark(s(X)) =  [1]                        
                                   >= [1]                        
                                   =  s(mark(X))                 
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:7: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(from(X)) -> a__from(mark(X))
            mark(s(X)) -> s(mark(X))
        - Weak TRS:
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__from(X) -> cons(mark(X),from(s(X)))
            a__from(X) -> from(X)
            mark(0()) -> 0()
            mark(nil()) -> nil()
        - Signature:
            {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__first,a__from,mark} and constructors {0,cons,first
            ,from,nil,s}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(a__first) = {1,2},
          uargs(a__from) = {1},
          uargs(cons) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {a__first,a__from,mark}
        TcT has computed the following interpretation:
                 p(0) = [1]                        
                        [7]                        
          p(a__first) = [1 0] x_1 + [1 4] x_2 + [5]
                        [0 1]       [0 1]       [0]
           p(a__from) = [1 2] x_1 + [7]            
                        [0 1]       [2]            
              p(cons) = [1 0] x_1 + [4]            
                        [0 1]       [0]            
             p(first) = [1 0] x_1 + [1 4] x_2 + [5]
                        [0 1]       [0 1]       [0]
              p(from) = [1 2] x_1 + [6]            
                        [0 1]       [2]            
              p(mark) = [1 2] x_1 + [0]            
                        [0 1]       [0]            
               p(nil) = [0]                        
                        [2]                        
                 p(s) = [1 0] x_1 + [1]            
                        [0 1]       [2]            
        
        Following rules are strictly oriented:
        mark(from(X)) = [1 4] X + [10]  
                        [0 1]     [2]   
                      > [1 4] X + [7]   
                        [0 1]     [2]   
                      = a__from(mark(X))
        
           mark(s(X)) = [1 2] X + [5]   
                        [0 1]     [2]   
                      > [1 2] X + [1]   
                        [0 1]     [2]   
                      = s(mark(X))      
        
        
        Following rules are (at-least) weakly oriented:
                 a__first(X1,X2) =  [1 0] X1 + [1 4] X2 + [5]  
                                    [0 1]      [0 1]      [0]  
                                 >= [1 0] X1 + [1 4] X2 + [5]  
                                    [0 1]      [0 1]      [0]  
                                 =  first(X1,X2)               
        
                 a__first(0(),X) =  [1 4] X + [6]              
                                    [0 1]     [7]              
                                 >= [0]                        
                                    [2]                        
                                 =  nil()                      
        
        a__first(s(X),cons(Y,Z)) =  [1 0] X + [1 4] Y + [10]   
                                    [0 1]     [0 1]     [2]    
                                 >= [1 2] Y + [4]              
                                    [0 1]     [0]              
                                 =  cons(mark(Y),first(X,Z))   
        
                      a__from(X) =  [1 2] X + [7]              
                                    [0 1]     [2]              
                                 >= [1 2] X + [4]              
                                    [0 1]     [0]              
                                 =  cons(mark(X),from(s(X)))   
        
                      a__from(X) =  [1 2] X + [7]              
                                    [0 1]     [2]              
                                 >= [1 2] X + [6]              
                                    [0 1]     [2]              
                                 =  from(X)                    
        
                       mark(0()) =  [15]                       
                                    [7]                        
                                 >= [1]                        
                                    [7]                        
                                 =  0()                        
        
               mark(cons(X1,X2)) =  [1 2] X1 + [4]             
                                    [0 1]      [0]             
                                 >= [1 2] X1 + [4]             
                                    [0 1]      [0]             
                                 =  cons(mark(X1),X2)          
        
              mark(first(X1,X2)) =  [1 2] X1 + [1 6] X2 + [5]  
                                    [0 1]      [0 1]      [0]  
                                 >= [1 2] X1 + [1 6] X2 + [5]  
                                    [0 1]      [0 1]      [0]  
                                 =  a__first(mark(X1),mark(X2))
        
                     mark(nil()) =  [4]                        
                                    [2]                        
                                 >= [0]                        
                                    [2]                        
                                 =  nil()                      
        
** Step 1.b:8: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        - Weak TRS:
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__from(X) -> cons(mark(X),from(s(X)))
            a__from(X) -> from(X)
            mark(0()) -> 0()
            mark(from(X)) -> a__from(mark(X))
            mark(nil()) -> nil()
            mark(s(X)) -> s(mark(X))
        - Signature:
            {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__first,a__from,mark} and constructors {0,cons,first
            ,from,nil,s}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(a__first) = {1,2},
          uargs(a__from) = {1},
          uargs(cons) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {a__first,a__from,mark}
        TcT has computed the following interpretation:
                 p(0) = [0]                        
                        [0]                        
          p(a__first) = [1 2] x_1 + [1 4] x_2 + [6]
                        [0 1]       [0 1]       [2]
           p(a__from) = [1 4] x_1 + [0]            
                        [0 1]       [0]            
              p(cons) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
             p(first) = [1 2] x_1 + [1 4] x_2 + [0]
                        [0 1]       [0 1]       [2]
              p(from) = [1 4] x_1 + [0]            
                        [0 1]       [0]            
              p(mark) = [1 4] x_1 + [0]            
                        [0 1]       [0]            
               p(nil) = [1]                        
                        [2]                        
                 p(s) = [1 0] x_1 + [1]            
                        [0 1]       [2]            
        
        Following rules are strictly oriented:
        mark(first(X1,X2)) = [1 6] X1 + [1 8] X2 + [8]  
                             [0 1]      [0 1]      [2]  
                           > [1 6] X1 + [1 8] X2 + [6]  
                             [0 1]      [0 1]      [2]  
                           = a__first(mark(X1),mark(X2))
        
        
        Following rules are (at-least) weakly oriented:
                 a__first(X1,X2) =  [1 2] X1 + [1 4] X2 + [6]
                                    [0 1]      [0 1]      [2]
                                 >= [1 2] X1 + [1 4] X2 + [0]
                                    [0 1]      [0 1]      [2]
                                 =  first(X1,X2)             
        
                 a__first(0(),X) =  [1 4] X + [6]            
                                    [0 1]     [2]            
                                 >= [1]                      
                                    [2]                      
                                 =  nil()                    
        
        a__first(s(X),cons(Y,Z)) =  [1 2] X + [1 4] Y + [11] 
                                    [0 1]     [0 1]     [4]  
                                 >= [1 4] Y + [0]            
                                    [0 1]     [0]            
                                 =  cons(mark(Y),first(X,Z)) 
        
                      a__from(X) =  [1 4] X + [0]            
                                    [0 1]     [0]            
                                 >= [1 4] X + [0]            
                                    [0 1]     [0]            
                                 =  cons(mark(X),from(s(X))) 
        
                      a__from(X) =  [1 4] X + [0]            
                                    [0 1]     [0]            
                                 >= [1 4] X + [0]            
                                    [0 1]     [0]            
                                 =  from(X)                  
        
                       mark(0()) =  [0]                      
                                    [0]                      
                                 >= [0]                      
                                    [0]                      
                                 =  0()                      
        
               mark(cons(X1,X2)) =  [1 4] X1 + [0]           
                                    [0 1]      [0]           
                                 >= [1 4] X1 + [0]           
                                    [0 1]      [0]           
                                 =  cons(mark(X1),X2)        
        
                   mark(from(X)) =  [1 8] X + [0]            
                                    [0 1]     [0]            
                                 >= [1 8] X + [0]            
                                    [0 1]     [0]            
                                 =  a__from(mark(X))         
        
                     mark(nil()) =  [9]                      
                                    [2]                      
                                 >= [1]                      
                                    [2]                      
                                 =  nil()                    
        
                      mark(s(X)) =  [1 4] X + [9]            
                                    [0 1]     [2]            
                                 >= [1 4] X + [1]            
                                    [0 1]     [2]            
                                 =  s(mark(X))               
        
** Step 1.b:9: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
        - Weak TRS:
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__from(X) -> cons(mark(X),from(s(X)))
            a__from(X) -> from(X)
            mark(0()) -> 0()
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(from(X)) -> a__from(mark(X))
            mark(nil()) -> nil()
            mark(s(X)) -> s(mark(X))
        - Signature:
            {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__first,a__from,mark} and constructors {0,cons,first
            ,from,nil,s}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(a__first) = {1,2},
          uargs(a__from) = {1},
          uargs(cons) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {a__first,a__from,mark}
        TcT has computed the following interpretation:
                 p(0) = [0]                        
                        [7]                        
          p(a__first) = [1 0] x_1 + [1 4] x_2 + [4]
                        [0 1]       [0 1]       [1]
           p(a__from) = [1 1] x_1 + [0]            
                        [0 1]       [3]            
              p(cons) = [1 0] x_1 + [0]            
                        [0 1]       [1]            
             p(first) = [1 0] x_1 + [1 4] x_2 + [3]
                        [0 1]       [0 1]       [1]
              p(from) = [1 1] x_1 + [0]            
                        [0 1]       [3]            
              p(mark) = [1 1] x_1 + [0]            
                        [0 1]       [0]            
               p(nil) = [0]                        
                        [1]                        
                 p(s) = [1 0] x_1 + [5]            
                        [0 1]       [7]            
        
        Following rules are strictly oriented:
        mark(cons(X1,X2)) = [1 1] X1 + [1]   
                            [0 1]      [1]   
                          > [1 1] X1 + [0]   
                            [0 1]      [1]   
                          = cons(mark(X1),X2)
        
        
        Following rules are (at-least) weakly oriented:
                 a__first(X1,X2) =  [1 0] X1 + [1 4] X2 + [4]  
                                    [0 1]      [0 1]      [1]  
                                 >= [1 0] X1 + [1 4] X2 + [3]  
                                    [0 1]      [0 1]      [1]  
                                 =  first(X1,X2)               
        
                 a__first(0(),X) =  [1 4] X + [4]              
                                    [0 1]     [8]              
                                 >= [0]                        
                                    [1]                        
                                 =  nil()                      
        
        a__first(s(X),cons(Y,Z)) =  [1 0] X + [1 4] Y + [13]   
                                    [0 1]     [0 1]     [9]    
                                 >= [1 1] Y + [0]              
                                    [0 1]     [1]              
                                 =  cons(mark(Y),first(X,Z))   
        
                      a__from(X) =  [1 1] X + [0]              
                                    [0 1]     [3]              
                                 >= [1 1] X + [0]              
                                    [0 1]     [1]              
                                 =  cons(mark(X),from(s(X)))   
        
                      a__from(X) =  [1 1] X + [0]              
                                    [0 1]     [3]              
                                 >= [1 1] X + [0]              
                                    [0 1]     [3]              
                                 =  from(X)                    
        
                       mark(0()) =  [7]                        
                                    [7]                        
                                 >= [0]                        
                                    [7]                        
                                 =  0()                        
        
              mark(first(X1,X2)) =  [1 1] X1 + [1 5] X2 + [4]  
                                    [0 1]      [0 1]      [1]  
                                 >= [1 1] X1 + [1 5] X2 + [4]  
                                    [0 1]      [0 1]      [1]  
                                 =  a__first(mark(X1),mark(X2))
        
                   mark(from(X)) =  [1 2] X + [3]              
                                    [0 1]     [3]              
                                 >= [1 2] X + [0]              
                                    [0 1]     [3]              
                                 =  a__from(mark(X))           
        
                     mark(nil()) =  [1]                        
                                    [1]                        
                                 >= [0]                        
                                    [1]                        
                                 =  nil()                      
        
                      mark(s(X)) =  [1 1] X + [12]             
                                    [0 1]     [7]              
                                 >= [1 1] X + [5]              
                                    [0 1]     [7]              
                                 =  s(mark(X))                 
        
** Step 1.b:10: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__from(X) -> cons(mark(X),from(s(X)))
            a__from(X) -> from(X)
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(from(X)) -> a__from(mark(X))
            mark(nil()) -> nil()
            mark(s(X)) -> s(mark(X))
        - Signature:
            {a__first/2,a__from/1,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__first,a__from,mark} and constructors {0,cons,first
            ,from,nil,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))