* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) first(X1,X2) -> n__first(X1,X2) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,first/2,from/1,s/1} / {0/0,cons/2,n__first/2,n__from/1,n__s/1,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,first,from,s} and constructors {0,cons,n__first ,n__from,n__s,nil} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) first(X1,X2) -> n__first(X1,X2) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,first/2,from/1,s/1} / {0/0,cons/2,n__first/2,n__from/1,n__s/1,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,first,from,s} and constructors {0,cons,n__first ,n__from,n__s,nil} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: activate(x){x -> n__first(x,y)} = activate(n__first(x,y)) ->^+ first(activate(x),activate(y)) = C[activate(x) = activate(x){}] ** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) first(X1,X2) -> n__first(X1,X2) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,first/2,from/1,s/1} / {0/0,cons/2,n__first/2,n__from/1,n__s/1,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,first,from,s} and constructors {0,cons,n__first ,n__from,n__s,nil} + Applied Processor: InnermostRuleRemoval + Details: Arguments of following rules are not normal-forms. first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) All above mentioned rules can be savely removed. ** Step 1.b:2: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) first(X1,X2) -> n__first(X1,X2) first(0(),X) -> nil() from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,first/2,from/1,s/1} / {0/0,cons/2,n__first/2,n__from/1,n__s/1,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,first,from,s} and constructors {0,cons,n__first ,n__from,n__s,nil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(first) = {1,2}, uargs(from) = {1}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [3] p(activate) = [2] x1 + [0] p(cons) = [1] x2 + [0] p(first) = [1] x1 + [1] x2 + [0] p(from) = [1] x1 + [1] p(n__first) = [1] x1 + [1] x2 + [0] p(n__from) = [1] x1 + [0] p(n__s) = [1] x1 + [0] p(nil) = [0] p(s) = [1] x1 + [1] Following rules are strictly oriented: first(0(),X) = [1] X + [3] > [0] = nil() from(X) = [1] X + [1] > [1] X + [0] = cons(X,n__from(n__s(X))) from(X) = [1] X + [1] > [1] X + [0] = n__from(X) s(X) = [1] X + [1] > [1] X + [0] = n__s(X) Following rules are (at-least) weakly oriented: activate(X) = [2] X + [0] >= [1] X + [0] = X activate(n__first(X1,X2)) = [2] X1 + [2] X2 + [0] >= [2] X1 + [2] X2 + [0] = first(activate(X1),activate(X2)) activate(n__from(X)) = [2] X + [0] >= [2] X + [1] = from(activate(X)) activate(n__s(X)) = [2] X + [0] >= [2] X + [1] = s(activate(X)) first(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = n__first(X1,X2) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:3: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) first(X1,X2) -> n__first(X1,X2) - Weak TRS: first(0(),X) -> nil() from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,first/2,from/1,s/1} / {0/0,cons/2,n__first/2,n__from/1,n__s/1,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,first,from,s} and constructors {0,cons,n__first ,n__from,n__s,nil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(first) = {1,2}, uargs(from) = {1}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(activate) = [10] x1 + [0] p(cons) = [1] x2 + [0] p(first) = [1] x1 + [1] x2 + [1] p(from) = [1] x1 + [3] p(n__first) = [1] x1 + [1] x2 + [0] p(n__from) = [1] x1 + [3] p(n__s) = [1] x1 + [0] p(nil) = [1] p(s) = [1] x1 + [0] Following rules are strictly oriented: activate(n__from(X)) = [10] X + [30] > [10] X + [3] = from(activate(X)) first(X1,X2) = [1] X1 + [1] X2 + [1] > [1] X1 + [1] X2 + [0] = n__first(X1,X2) Following rules are (at-least) weakly oriented: activate(X) = [10] X + [0] >= [1] X + [0] = X activate(n__first(X1,X2)) = [10] X1 + [10] X2 + [0] >= [10] X1 + [10] X2 + [1] = first(activate(X1),activate(X2)) activate(n__s(X)) = [10] X + [0] >= [10] X + [0] = s(activate(X)) first(0(),X) = [1] X + [1] >= [1] = nil() from(X) = [1] X + [3] >= [1] X + [3] = cons(X,n__from(n__s(X))) from(X) = [1] X + [3] >= [1] X + [3] = n__from(X) s(X) = [1] X + [0] >= [1] X + [0] = n__s(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:4: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) - Weak TRS: activate(n__from(X)) -> from(activate(X)) first(X1,X2) -> n__first(X1,X2) first(0(),X) -> nil() from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,first/2,from/1,s/1} / {0/0,cons/2,n__first/2,n__from/1,n__s/1,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,first,from,s} and constructors {0,cons,n__first ,n__from,n__s,nil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(first) = {1,2}, uargs(from) = {1}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(activate) = [3] x1 + [0] p(cons) = [1] x2 + [1] p(first) = [1] x1 + [1] x2 + [0] p(from) = [1] x1 + [3] p(n__first) = [1] x1 + [1] x2 + [0] p(n__from) = [1] x1 + [1] p(n__s) = [1] x1 + [1] p(nil) = [0] p(s) = [1] x1 + [1] Following rules are strictly oriented: activate(n__s(X)) = [3] X + [3] > [3] X + [1] = s(activate(X)) Following rules are (at-least) weakly oriented: activate(X) = [3] X + [0] >= [1] X + [0] = X activate(n__first(X1,X2)) = [3] X1 + [3] X2 + [0] >= [3] X1 + [3] X2 + [0] = first(activate(X1),activate(X2)) activate(n__from(X)) = [3] X + [3] >= [3] X + [3] = from(activate(X)) first(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = n__first(X1,X2) first(0(),X) = [1] X + [0] >= [0] = nil() from(X) = [1] X + [3] >= [1] X + [3] = cons(X,n__from(n__s(X))) from(X) = [1] X + [3] >= [1] X + [1] = n__from(X) s(X) = [1] X + [1] >= [1] X + [1] = n__s(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:5: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) - Weak TRS: activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) first(X1,X2) -> n__first(X1,X2) first(0(),X) -> nil() from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,first/2,from/1,s/1} / {0/0,cons/2,n__first/2,n__from/1,n__s/1,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,first,from,s} and constructors {0,cons,n__first ,n__from,n__s,nil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(first) = {1,2}, uargs(from) = {1}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [3] p(activate) = [11] x1 + [0] p(cons) = [1] x2 + [10] p(first) = [1] x1 + [1] x2 + [2] p(from) = [1] x1 + [11] p(n__first) = [1] x1 + [1] x2 + [1] p(n__from) = [1] x1 + [1] p(n__s) = [1] x1 + [0] p(nil) = [5] p(s) = [1] x1 + [0] Following rules are strictly oriented: activate(n__first(X1,X2)) = [11] X1 + [11] X2 + [11] > [11] X1 + [11] X2 + [2] = first(activate(X1),activate(X2)) Following rules are (at-least) weakly oriented: activate(X) = [11] X + [0] >= [1] X + [0] = X activate(n__from(X)) = [11] X + [11] >= [11] X + [11] = from(activate(X)) activate(n__s(X)) = [11] X + [0] >= [11] X + [0] = s(activate(X)) first(X1,X2) = [1] X1 + [1] X2 + [2] >= [1] X1 + [1] X2 + [1] = n__first(X1,X2) first(0(),X) = [1] X + [5] >= [5] = nil() from(X) = [1] X + [11] >= [1] X + [11] = cons(X,n__from(n__s(X))) from(X) = [1] X + [11] >= [1] X + [1] = n__from(X) s(X) = [1] X + [0] >= [1] X + [0] = n__s(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:6: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X - Weak TRS: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) first(X1,X2) -> n__first(X1,X2) first(0(),X) -> nil() from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,first/2,from/1,s/1} / {0/0,cons/2,n__first/2,n__from/1,n__s/1,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,first,from,s} and constructors {0,cons,n__first ,n__from,n__s,nil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(first) = {1,2}, uargs(from) = {1}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [2] p(activate) = [3] x1 + [1] p(cons) = [1] x2 + [0] p(first) = [1] x1 + [1] x2 + [2] p(from) = [1] x1 + [0] p(n__first) = [1] x1 + [1] x2 + [1] p(n__from) = [1] x1 + [0] p(n__s) = [1] x1 + [0] p(nil) = [4] p(s) = [1] x1 + [0] Following rules are strictly oriented: activate(X) = [3] X + [1] > [1] X + [0] = X Following rules are (at-least) weakly oriented: activate(n__first(X1,X2)) = [3] X1 + [3] X2 + [4] >= [3] X1 + [3] X2 + [4] = first(activate(X1),activate(X2)) activate(n__from(X)) = [3] X + [1] >= [3] X + [1] = from(activate(X)) activate(n__s(X)) = [3] X + [1] >= [3] X + [1] = s(activate(X)) first(X1,X2) = [1] X1 + [1] X2 + [2] >= [1] X1 + [1] X2 + [1] = n__first(X1,X2) first(0(),X) = [1] X + [4] >= [4] = nil() from(X) = [1] X + [0] >= [1] X + [0] = cons(X,n__from(n__s(X))) from(X) = [1] X + [0] >= [1] X + [0] = n__from(X) s(X) = [1] X + [0] >= [1] X + [0] = n__s(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:7: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: activate(X) -> X activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) first(X1,X2) -> n__first(X1,X2) first(0(),X) -> nil() from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,first/2,from/1,s/1} / {0/0,cons/2,n__first/2,n__from/1,n__s/1,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,first,from,s} and constructors {0,cons,n__first ,n__from,n__s,nil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))