* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
        - Signature:
            {activate/1,first/2,from/1,s/1} / {0/0,cons/2,n__first/2,n__from/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,first,from,s} and constructors {0,cons,n__first
            ,n__from,n__s,nil}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
        - Signature:
            {activate/1,first/2,from/1,s/1} / {0/0,cons/2,n__first/2,n__from/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,first,from,s} and constructors {0,cons,n__first
            ,n__from,n__s,nil}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__first(x,y)} =
            activate(n__first(x,y)) ->^+ first(activate(x),activate(y))
              = C[activate(x) = activate(x){}]

** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
        - Signature:
            {activate/1,first/2,from/1,s/1} / {0/0,cons/2,n__first/2,n__from/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,first,from,s} and constructors {0,cons,n__first
            ,n__from,n__s,nil}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        All above mentioned rules can be savely removed.
** Step 1.b:2: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
        - Signature:
            {activate/1,first/2,from/1,s/1} / {0/0,cons/2,n__first/2,n__from/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,first,from,s} and constructors {0,cons,n__first
            ,n__from,n__s,nil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(first) = {1,2},
            uargs(from) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [3]                  
            p(activate) = [2] x1 + [0]         
                p(cons) = [1] x2 + [0]         
               p(first) = [1] x1 + [1] x2 + [0]
                p(from) = [1] x1 + [1]         
            p(n__first) = [1] x1 + [1] x2 + [0]
             p(n__from) = [1] x1 + [0]         
                p(n__s) = [1] x1 + [0]         
                 p(nil) = [0]                  
                   p(s) = [1] x1 + [1]         
          
          Following rules are strictly oriented:
          first(0(),X) = [1] X + [3]             
                       > [0]                     
                       = nil()                   
          
               from(X) = [1] X + [1]             
                       > [1] X + [0]             
                       = cons(X,n__from(n__s(X)))
          
               from(X) = [1] X + [1]             
                       > [1] X + [0]             
                       = n__from(X)              
          
                  s(X) = [1] X + [1]             
                       > [1] X + [0]             
                       = n__s(X)                 
          
          
          Following rules are (at-least) weakly oriented:
                        activate(X) =  [2] X + [0]                     
                                    >= [1] X + [0]                     
                                    =  X                               
          
          activate(n__first(X1,X2)) =  [2] X1 + [2] X2 + [0]           
                                    >= [2] X1 + [2] X2 + [0]           
                                    =  first(activate(X1),activate(X2))
          
               activate(n__from(X)) =  [2] X + [0]                     
                                    >= [2] X + [1]                     
                                    =  from(activate(X))               
          
                  activate(n__s(X)) =  [2] X + [0]                     
                                    >= [2] X + [1]                     
                                    =  s(activate(X))                  
          
                       first(X1,X2) =  [1] X1 + [1] X2 + [0]           
                                    >= [1] X1 + [1] X2 + [0]           
                                    =  n__first(X1,X2)                 
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:3: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            first(X1,X2) -> n__first(X1,X2)
        - Weak TRS:
            first(0(),X) -> nil()
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
        - Signature:
            {activate/1,first/2,from/1,s/1} / {0/0,cons/2,n__first/2,n__from/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,first,from,s} and constructors {0,cons,n__first
            ,n__from,n__s,nil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(first) = {1,2},
            uargs(from) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
            p(activate) = [10] x1 + [0]        
                p(cons) = [1] x2 + [0]         
               p(first) = [1] x1 + [1] x2 + [1]
                p(from) = [1] x1 + [3]         
            p(n__first) = [1] x1 + [1] x2 + [0]
             p(n__from) = [1] x1 + [3]         
                p(n__s) = [1] x1 + [0]         
                 p(nil) = [1]                  
                   p(s) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
          activate(n__from(X)) = [10] X + [30]        
                               > [10] X + [3]         
                               = from(activate(X))    
          
                  first(X1,X2) = [1] X1 + [1] X2 + [1]
                               > [1] X1 + [1] X2 + [0]
                               = n__first(X1,X2)      
          
          
          Following rules are (at-least) weakly oriented:
                        activate(X) =  [10] X + [0]                    
                                    >= [1] X + [0]                     
                                    =  X                               
          
          activate(n__first(X1,X2)) =  [10] X1 + [10] X2 + [0]         
                                    >= [10] X1 + [10] X2 + [1]         
                                    =  first(activate(X1),activate(X2))
          
                  activate(n__s(X)) =  [10] X + [0]                    
                                    >= [10] X + [0]                    
                                    =  s(activate(X))                  
          
                       first(0(),X) =  [1] X + [1]                     
                                    >= [1]                             
                                    =  nil()                           
          
                            from(X) =  [1] X + [3]                     
                                    >= [1] X + [3]                     
                                    =  cons(X,n__from(n__s(X)))        
          
                            from(X) =  [1] X + [3]                     
                                    >= [1] X + [3]                     
                                    =  n__from(X)                      
          
                               s(X) =  [1] X + [0]                     
                                    >= [1] X + [0]                     
                                    =  n__s(X)                         
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:4: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
        - Weak TRS:
            activate(n__from(X)) -> from(activate(X))
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
        - Signature:
            {activate/1,first/2,from/1,s/1} / {0/0,cons/2,n__first/2,n__from/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,first,from,s} and constructors {0,cons,n__first
            ,n__from,n__s,nil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(first) = {1,2},
            uargs(from) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
            p(activate) = [3] x1 + [0]         
                p(cons) = [1] x2 + [1]         
               p(first) = [1] x1 + [1] x2 + [0]
                p(from) = [1] x1 + [3]         
            p(n__first) = [1] x1 + [1] x2 + [0]
             p(n__from) = [1] x1 + [1]         
                p(n__s) = [1] x1 + [1]         
                 p(nil) = [0]                  
                   p(s) = [1] x1 + [1]         
          
          Following rules are strictly oriented:
          activate(n__s(X)) = [3] X + [3]   
                            > [3] X + [1]   
                            = s(activate(X))
          
          
          Following rules are (at-least) weakly oriented:
                        activate(X) =  [3] X + [0]                     
                                    >= [1] X + [0]                     
                                    =  X                               
          
          activate(n__first(X1,X2)) =  [3] X1 + [3] X2 + [0]           
                                    >= [3] X1 + [3] X2 + [0]           
                                    =  first(activate(X1),activate(X2))
          
               activate(n__from(X)) =  [3] X + [3]                     
                                    >= [3] X + [3]                     
                                    =  from(activate(X))               
          
                       first(X1,X2) =  [1] X1 + [1] X2 + [0]           
                                    >= [1] X1 + [1] X2 + [0]           
                                    =  n__first(X1,X2)                 
          
                       first(0(),X) =  [1] X + [0]                     
                                    >= [0]                             
                                    =  nil()                           
          
                            from(X) =  [1] X + [3]                     
                                    >= [1] X + [3]                     
                                    =  cons(X,n__from(n__s(X)))        
          
                            from(X) =  [1] X + [3]                     
                                    >= [1] X + [1]                     
                                    =  n__from(X)                      
          
                               s(X) =  [1] X + [1]                     
                                    >= [1] X + [1]                     
                                    =  n__s(X)                         
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:5: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
        - Weak TRS:
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
        - Signature:
            {activate/1,first/2,from/1,s/1} / {0/0,cons/2,n__first/2,n__from/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,first,from,s} and constructors {0,cons,n__first
            ,n__from,n__s,nil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(first) = {1,2},
            uargs(from) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [3]                  
            p(activate) = [11] x1 + [0]        
                p(cons) = [1] x2 + [10]        
               p(first) = [1] x1 + [1] x2 + [2]
                p(from) = [1] x1 + [11]        
            p(n__first) = [1] x1 + [1] x2 + [1]
             p(n__from) = [1] x1 + [1]         
                p(n__s) = [1] x1 + [0]         
                 p(nil) = [5]                  
                   p(s) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
          activate(n__first(X1,X2)) = [11] X1 + [11] X2 + [11]        
                                    > [11] X1 + [11] X2 + [2]         
                                    = first(activate(X1),activate(X2))
          
          
          Following rules are (at-least) weakly oriented:
                   activate(X) =  [11] X + [0]            
                               >= [1] X + [0]             
                               =  X                       
          
          activate(n__from(X)) =  [11] X + [11]           
                               >= [11] X + [11]           
                               =  from(activate(X))       
          
             activate(n__s(X)) =  [11] X + [0]            
                               >= [11] X + [0]            
                               =  s(activate(X))          
          
                  first(X1,X2) =  [1] X1 + [1] X2 + [2]   
                               >= [1] X1 + [1] X2 + [1]   
                               =  n__first(X1,X2)         
          
                  first(0(),X) =  [1] X + [5]             
                               >= [5]                     
                               =  nil()                   
          
                       from(X) =  [1] X + [11]            
                               >= [1] X + [11]            
                               =  cons(X,n__from(n__s(X)))
          
                       from(X) =  [1] X + [11]            
                               >= [1] X + [1]             
                               =  n__from(X)              
          
                          s(X) =  [1] X + [0]             
                               >= [1] X + [0]             
                               =  n__s(X)                 
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:6: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
        - Weak TRS:
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
        - Signature:
            {activate/1,first/2,from/1,s/1} / {0/0,cons/2,n__first/2,n__from/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,first,from,s} and constructors {0,cons,n__first
            ,n__from,n__s,nil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(first) = {1,2},
            uargs(from) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [2]                  
            p(activate) = [3] x1 + [1]         
                p(cons) = [1] x2 + [0]         
               p(first) = [1] x1 + [1] x2 + [2]
                p(from) = [1] x1 + [0]         
            p(n__first) = [1] x1 + [1] x2 + [1]
             p(n__from) = [1] x1 + [0]         
                p(n__s) = [1] x1 + [0]         
                 p(nil) = [4]                  
                   p(s) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
          activate(X) = [3] X + [1]
                      > [1] X + [0]
                      = X          
          
          
          Following rules are (at-least) weakly oriented:
          activate(n__first(X1,X2)) =  [3] X1 + [3] X2 + [4]           
                                    >= [3] X1 + [3] X2 + [4]           
                                    =  first(activate(X1),activate(X2))
          
               activate(n__from(X)) =  [3] X + [1]                     
                                    >= [3] X + [1]                     
                                    =  from(activate(X))               
          
                  activate(n__s(X)) =  [3] X + [1]                     
                                    >= [3] X + [1]                     
                                    =  s(activate(X))                  
          
                       first(X1,X2) =  [1] X1 + [1] X2 + [2]           
                                    >= [1] X1 + [1] X2 + [1]           
                                    =  n__first(X1,X2)                 
          
                       first(0(),X) =  [1] X + [4]                     
                                    >= [4]                             
                                    =  nil()                           
          
                            from(X) =  [1] X + [0]                     
                                    >= [1] X + [0]                     
                                    =  cons(X,n__from(n__s(X)))        
          
                            from(X) =  [1] X + [0]                     
                                    >= [1] X + [0]                     
                                    =  n__from(X)                      
          
                               s(X) =  [1] X + [0]                     
                                    >= [1] X + [0]                     
                                    =  n__s(X)                         
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:7: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
        - Signature:
            {activate/1,first/2,from/1,s/1} / {0/0,cons/2,n__first/2,n__from/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,first,from,s} and constructors {0,cons,n__first
            ,n__from,n__s,nil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))