0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 InnermostUnusableRulesProof (BOTH BOUNDS(ID, ID), 1 ms)
↳4 CpxWeightedTrs
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CpxTypedWeightedTrs
↳7 CompletionProof (UPPER BOUND(ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 CompleteCoflocoProof (⇔, 183 ms)
↳12 BOUNDS(1, n^1)
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
first(0, X) → nil [1]
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z))) [1]
from(X) → cons(X, n__from(n__s(X))) [1]
first(X1, X2) → n__first(X1, X2) [1]
from(X) → n__from(X) [1]
s(X) → n__s(X) [1]
activate(n__first(X1, X2)) → first(activate(X1), activate(X2)) [1]
activate(n__from(X)) → from(activate(X)) [1]
activate(n__s(X)) → s(activate(X)) [1]
activate(X) → X [1]
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z))) [1]
s(X) → n__s(X) [1]
first(0, X) → nil [1]
from(X) → cons(X, n__from(n__s(X))) [1]
first(X1, X2) → n__first(X1, X2) [1]
from(X) → n__from(X) [1]
s(X) → n__s(X) [1]
activate(n__first(X1, X2)) → first(activate(X1), activate(X2)) [1]
activate(n__from(X)) → from(activate(X)) [1]
activate(n__s(X)) → s(activate(X)) [1]
activate(X) → X [1]
first(0, X) → nil [1]
from(X) → cons(X, n__from(n__s(X))) [1]
first(X1, X2) → n__first(X1, X2) [1]
from(X) → n__from(X) [1]
s(X) → n__s(X) [1]
activate(n__first(X1, X2)) → first(activate(X1), activate(X2)) [1]
activate(n__from(X)) → from(activate(X)) [1]
activate(n__s(X)) → s(activate(X)) [1]
activate(X) → X [1]
first :: 0:nil:n__s:n__from:cons:n__first → 0:nil:n__s:n__from:cons:n__first → 0:nil:n__s:n__from:cons:n__first 0 :: 0:nil:n__s:n__from:cons:n__first nil :: 0:nil:n__s:n__from:cons:n__first from :: 0:nil:n__s:n__from:cons:n__first → 0:nil:n__s:n__from:cons:n__first cons :: 0:nil:n__s:n__from:cons:n__first → 0:nil:n__s:n__from:cons:n__first → 0:nil:n__s:n__from:cons:n__first n__from :: 0:nil:n__s:n__from:cons:n__first → 0:nil:n__s:n__from:cons:n__first n__s :: 0:nil:n__s:n__from:cons:n__first → 0:nil:n__s:n__from:cons:n__first n__first :: 0:nil:n__s:n__from:cons:n__first → 0:nil:n__s:n__from:cons:n__first → 0:nil:n__s:n__from:cons:n__first s :: 0:nil:n__s:n__from:cons:n__first → 0:nil:n__s:n__from:cons:n__first activate :: 0:nil:n__s:n__from:cons:n__first → 0:nil:n__s:n__from:cons:n__first |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
nil => 1
activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 1 }→ s(activate(X)) :|: z = 1 + X, X >= 0
activate(z) -{ 1 }→ from(activate(X)) :|: z = 1 + X, X >= 0
activate(z) -{ 1 }→ first(activate(X1), activate(X2)) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
first(z, z') -{ 1 }→ 1 :|: z' = X, X >= 0, z = 0
first(z, z') -{ 1 }→ 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2
from(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
from(z) -{ 1 }→ 1 + X + (1 + (1 + X)) :|: X >= 0, z = X
s(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
eq(start(V, V1),0,[first(V, V1, Out)],[V >= 0,V1 >= 0]). eq(start(V, V1),0,[from(V, Out)],[V >= 0]). eq(start(V, V1),0,[s(V, Out)],[V >= 0]). eq(start(V, V1),0,[activate(V, Out)],[V >= 0]). eq(first(V, V1, Out),1,[],[Out = 1,V1 = X3,X3 >= 0,V = 0]). eq(from(V, Out),1,[],[Out = 3 + 2*X4,X4 >= 0,V = X4]). eq(first(V, V1, Out),1,[],[Out = 1 + X11 + X21,X11 >= 0,X21 >= 0,V = X11,V1 = X21]). eq(from(V, Out),1,[],[Out = 1 + X5,X5 >= 0,V = X5]). eq(s(V, Out),1,[],[Out = 1 + X6,X6 >= 0,V = X6]). eq(activate(V, Out),1,[activate(X12, Ret0),activate(X22, Ret1),first(Ret0, Ret1, Ret)],[Out = Ret,X12 >= 0,X22 >= 0,V = 1 + X12 + X22]). eq(activate(V, Out),1,[activate(X7, Ret01),from(Ret01, Ret2)],[Out = Ret2,V = 1 + X7,X7 >= 0]). eq(activate(V, Out),1,[activate(X8, Ret02),s(Ret02, Ret3)],[Out = Ret3,V = 1 + X8,X8 >= 0]). eq(activate(V, Out),1,[],[Out = X9,X9 >= 0,V = X9]). input_output_vars(first(V,V1,Out),[V,V1],[Out]). input_output_vars(from(V,Out),[V],[Out]). input_output_vars(s(V,Out),[V],[Out]). input_output_vars(activate(V,Out),[V],[Out]). |
CoFloCo proof output:
Preprocessing Cost Relations
=====================================
#### Computed strongly connected components
0. non_recursive : [first/3]
1. non_recursive : [from/2]
2. non_recursive : [s/2]
3. recursive [non_tail,multiple] : [activate/2]
4. non_recursive : [start/2]
#### Obtained direct recursion through partial evaluation
0. SCC is partially evaluated into first/3
1. SCC is partially evaluated into from/2
2. SCC is completely evaluated into other SCCs
3. SCC is partially evaluated into activate/2
4. SCC is partially evaluated into start/2
Control-Flow Refinement of Cost Relations
=====================================
### Specialization of cost equations first/3
* CE 7 is refined into CE [14]
* CE 6 is refined into CE [15]
### Cost equations --> "Loop" of first/3
* CEs [14] --> Loop 9
* CEs [15] --> Loop 10
### Ranking functions of CR first(V,V1,Out)
#### Partial ranking functions of CR first(V,V1,Out)
### Specialization of cost equations from/2
* CE 8 is refined into CE [16]
* CE 9 is refined into CE [17]
### Cost equations --> "Loop" of from/2
* CEs [16] --> Loop 11
* CEs [17] --> Loop 12
### Ranking functions of CR from(V,Out)
#### Partial ranking functions of CR from(V,Out)
### Specialization of cost equations activate/2
* CE 13 is refined into CE [18]
* CE 11 is refined into CE [19,20]
* CE 12 is refined into CE [21]
* CE 10 is refined into CE [22,23]
### Cost equations --> "Loop" of activate/2
* CEs [23] --> Loop 13
* CEs [22] --> Loop 14
* CEs [19,21] --> Loop 15
* CEs [20] --> Loop 16
* CEs [18] --> Loop 17
### Ranking functions of CR activate(V,Out)
* RF of phase [13,14,15,16]: [V]
#### Partial ranking functions of CR activate(V,Out)
* Partial RF of phase [13,14,15,16]:
- RF of loop [13:1,13:2,14:1,14:2,15:1,16:1]:
V
### Specialization of cost equations start/2
* CE 2 is refined into CE [24,25]
* CE 3 is refined into CE [26,27]
* CE 4 is refined into CE [28]
* CE 5 is refined into CE [29,30]
### Cost equations --> "Loop" of start/2
* CEs [24,25,26,27,28,29,30] --> Loop 18
### Ranking functions of CR start(V,V1)
#### Partial ranking functions of CR start(V,V1)
Computing Bounds
=====================================
#### Cost of chains of first(V,V1,Out):
* Chain [10]: 1
with precondition: [V=0,Out=1,V1>=0]
* Chain [9]: 1
with precondition: [V+V1+1=Out,V>=0,V1>=0]
#### Cost of chains of from(V,Out):
* Chain [12]: 1
with precondition: [V+1=Out,V>=0]
* Chain [11]: 1
with precondition: [2*V+3=Out,V>=0]
#### Cost of chains of activate(V,Out):
* Chain [17]: 1
with precondition: [V=Out,V>=0]
* Chain [multiple([13,14,15,16],[[17]])]: 8*it(13)+1*it([17])+0
Such that:it([17]) =< V+1
aux(1) =< V
it(13) =< aux(1)
with precondition: [V>=1,Out>=1]
#### Cost of chains of start(V,V1):
* Chain [18]: 1*s(1)+8*s(3)+1
Such that:s(2) =< V
s(1) =< V+1
s(3) =< s(2)
with precondition: [V>=0]
Closed-form bounds of start(V,V1):
-------------------------------------
* Chain [18] with precondition: [V>=0]
- Upper bound: 9*V+2
- Complexity: n
### Maximum cost of start(V,V1): 9*V+2
Asymptotic class: n
* Total analysis performed in 132 ms.