* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__f(X)) -> f(activate(X)) activate(n__true()) -> true() f(X) -> if(X,c(),n__f(n__true())) f(X) -> n__f(X) if(false(),X,Y) -> activate(Y) if(true(),X,Y) -> X true() -> n__true() - Signature: {activate/1,f/1,if/3,true/0} / {c/0,false/0,n__f/1,n__true/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,f,if,true} and constructors {c,false,n__f ,n__true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__f(X)) -> f(activate(X)) activate(n__true()) -> true() f(X) -> if(X,c(),n__f(n__true())) f(X) -> n__f(X) if(false(),X,Y) -> activate(Y) if(true(),X,Y) -> X true() -> n__true() - Signature: {activate/1,f/1,if/3,true/0} / {c/0,false/0,n__f/1,n__true/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,f,if,true} and constructors {c,false,n__f ,n__true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: activate(x){x -> n__f(x)} = activate(n__f(x)) ->^+ f(activate(x)) = C[activate(x) = activate(x){}] ** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__f(X)) -> f(activate(X)) activate(n__true()) -> true() f(X) -> if(X,c(),n__f(n__true())) f(X) -> n__f(X) if(false(),X,Y) -> activate(Y) if(true(),X,Y) -> X true() -> n__true() - Signature: {activate/1,f/1,if/3,true/0} / {c/0,false/0,n__f/1,n__true/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,f,if,true} and constructors {c,false,n__f ,n__true} + Applied Processor: InnermostRuleRemoval + Details: Arguments of following rules are not normal-forms. if(true(),X,Y) -> X All above mentioned rules can be savely removed. ** Step 1.b:2: Bounds WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__f(X)) -> f(activate(X)) activate(n__true()) -> true() f(X) -> if(X,c(),n__f(n__true())) f(X) -> n__f(X) if(false(),X,Y) -> activate(Y) true() -> n__true() - Signature: {activate/1,f/1,if/3,true/0} / {c/0,false/0,n__f/1,n__true/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,f,if,true} and constructors {c,false,n__f ,n__true} + Applied Processor: Bounds {initialAutomaton = minimal, enrichment = match} + Details: The problem is match-bounded by 4. The enriched problem is compatible with follwoing automaton. activate_0(2) -> 1 activate_1(2) -> 1 activate_1(2) -> 3 activate_1(5) -> 1 activate_1(8) -> 1 activate_1(8) -> 3 activate_2(6) -> 10 activate_2(9) -> 10 c_0() -> 1 c_0() -> 2 c_0() -> 3 c_1() -> 4 c_2() -> 7 c_3() -> 11 f_0(2) -> 1 f_1(3) -> 1 f_1(3) -> 3 f_2(10) -> 1 f_2(10) -> 3 false_0() -> 1 false_0() -> 2 false_0() -> 3 if_0(2,2,2) -> 1 if_1(2,4,5) -> 1 if_2(3,7,8) -> 1 if_2(3,7,8) -> 3 if_3(10,11,12) -> 1 if_3(10,11,12) -> 3 n__f_0(2) -> 1 n__f_0(2) -> 2 n__f_0(2) -> 3 n__f_1(2) -> 1 n__f_1(6) -> 1 n__f_1(6) -> 5 n__f_2(3) -> 1 n__f_2(3) -> 3 n__f_2(9) -> 1 n__f_2(9) -> 3 n__f_2(9) -> 8 n__f_3(10) -> 1 n__f_3(10) -> 3 n__f_3(13) -> 12 n__true_0() -> 1 n__true_0() -> 2 n__true_0() -> 3 n__true_1() -> 1 n__true_1() -> 6 n__true_1() -> 10 n__true_2() -> 1 n__true_2() -> 3 n__true_2() -> 9 n__true_2() -> 10 n__true_3() -> 10 n__true_3() -> 13 n__true_4() -> 10 true_0() -> 1 true_1() -> 1 true_1() -> 3 true_2() -> 10 true_3() -> 10 2 -> 1 2 -> 3 5 -> 1 6 -> 10 8 -> 1 8 -> 3 9 -> 10 ** Step 1.b:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: activate(X) -> X activate(n__f(X)) -> f(activate(X)) activate(n__true()) -> true() f(X) -> if(X,c(),n__f(n__true())) f(X) -> n__f(X) if(false(),X,Y) -> activate(Y) true() -> n__true() - Signature: {activate/1,f/1,if/3,true/0} / {c/0,false/0,n__f/1,n__true/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,f,if,true} and constructors {c,false,n__f ,n__true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))