* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
+ Considered Problem:
- Strict TRS:
activate(X) -> X
activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
activate(n__incr(X)) -> incr(activate(X))
activate(n__oddNs()) -> oddNs()
activate(n__repItems(X)) -> repItems(activate(X))
activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
activate(n__zip(X1,X2)) -> zip(activate(X1),activate(X2))
cons(X1,X2) -> n__cons(X1,X2)
incr(X) -> n__incr(X)
incr(cons(X,XS)) -> cons(s(X),n__incr(activate(XS)))
oddNs() -> incr(pairNs())
oddNs() -> n__oddNs()
pairNs() -> cons(0(),n__incr(n__oddNs()))
repItems(X) -> n__repItems(X)
repItems(cons(X,XS)) -> cons(X,n__cons(X,n__repItems(activate(XS))))
repItems(nil()) -> nil()
tail(cons(X,XS)) -> activate(XS)
take(X1,X2) -> n__take(X1,X2)
take(0(),XS) -> nil()
take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
zip(X,nil()) -> nil()
zip(X1,X2) -> n__zip(X1,X2)
zip(cons(X,XS),cons(Y,YS)) -> cons(pair(X,Y),n__zip(activate(XS),activate(YS)))
zip(nil(),XS) -> nil()
- Signature:
{activate/1,cons/2,incr/1,oddNs/0,pairNs/0,repItems/1,tail/1,take/2,zip/2} / {0/0,n__cons/2,n__incr/1
,n__oddNs/0,n__repItems/1,n__take/2,n__zip/2,nil/0,pair/2,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,cons,incr,oddNs,pairNs,repItems,tail,take
,zip} and constructors {0,n__cons,n__incr,n__oddNs,n__repItems,n__take,n__zip,nil,pair,s}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
activate(X) -> X
activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
activate(n__incr(X)) -> incr(activate(X))
activate(n__oddNs()) -> oddNs()
activate(n__repItems(X)) -> repItems(activate(X))
activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
activate(n__zip(X1,X2)) -> zip(activate(X1),activate(X2))
cons(X1,X2) -> n__cons(X1,X2)
incr(X) -> n__incr(X)
incr(cons(X,XS)) -> cons(s(X),n__incr(activate(XS)))
oddNs() -> incr(pairNs())
oddNs() -> n__oddNs()
pairNs() -> cons(0(),n__incr(n__oddNs()))
repItems(X) -> n__repItems(X)
repItems(cons(X,XS)) -> cons(X,n__cons(X,n__repItems(activate(XS))))
repItems(nil()) -> nil()
tail(cons(X,XS)) -> activate(XS)
take(X1,X2) -> n__take(X1,X2)
take(0(),XS) -> nil()
take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
zip(X,nil()) -> nil()
zip(X1,X2) -> n__zip(X1,X2)
zip(cons(X,XS),cons(Y,YS)) -> cons(pair(X,Y),n__zip(activate(XS),activate(YS)))
zip(nil(),XS) -> nil()
- Signature:
{activate/1,cons/2,incr/1,oddNs/0,pairNs/0,repItems/1,tail/1,take/2,zip/2} / {0/0,n__cons/2,n__incr/1
,n__oddNs/0,n__repItems/1,n__take/2,n__zip/2,nil/0,pair/2,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,cons,incr,oddNs,pairNs,repItems,tail,take
,zip} and constructors {0,n__cons,n__incr,n__oddNs,n__repItems,n__take,n__zip,nil,pair,s}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
activate(x){x -> n__cons(x,y)} =
activate(n__cons(x,y)) ->^+ cons(activate(x),y)
= C[activate(x) = activate(x){}]
** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
activate(X) -> X
activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
activate(n__incr(X)) -> incr(activate(X))
activate(n__oddNs()) -> oddNs()
activate(n__repItems(X)) -> repItems(activate(X))
activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
activate(n__zip(X1,X2)) -> zip(activate(X1),activate(X2))
cons(X1,X2) -> n__cons(X1,X2)
incr(X) -> n__incr(X)
incr(cons(X,XS)) -> cons(s(X),n__incr(activate(XS)))
oddNs() -> incr(pairNs())
oddNs() -> n__oddNs()
pairNs() -> cons(0(),n__incr(n__oddNs()))
repItems(X) -> n__repItems(X)
repItems(cons(X,XS)) -> cons(X,n__cons(X,n__repItems(activate(XS))))
repItems(nil()) -> nil()
tail(cons(X,XS)) -> activate(XS)
take(X1,X2) -> n__take(X1,X2)
take(0(),XS) -> nil()
take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
zip(X,nil()) -> nil()
zip(X1,X2) -> n__zip(X1,X2)
zip(cons(X,XS),cons(Y,YS)) -> cons(pair(X,Y),n__zip(activate(XS),activate(YS)))
zip(nil(),XS) -> nil()
- Signature:
{activate/1,cons/2,incr/1,oddNs/0,pairNs/0,repItems/1,tail/1,take/2,zip/2} / {0/0,n__cons/2,n__incr/1
,n__oddNs/0,n__repItems/1,n__take/2,n__zip/2,nil/0,pair/2,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,cons,incr,oddNs,pairNs,repItems,tail,take
,zip} and constructors {0,n__cons,n__incr,n__oddNs,n__repItems,n__take,n__zip,nil,pair,s}
+ Applied Processor:
InnermostRuleRemoval
+ Details:
Arguments of following rules are not normal-forms.
incr(cons(X,XS)) -> cons(s(X),n__incr(activate(XS)))
repItems(cons(X,XS)) -> cons(X,n__cons(X,n__repItems(activate(XS))))
tail(cons(X,XS)) -> activate(XS)
take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
zip(cons(X,XS),cons(Y,YS)) -> cons(pair(X,Y),n__zip(activate(XS),activate(YS)))
All above mentioned rules can be savely removed.
** Step 1.b:2: Bounds WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
activate(X) -> X
activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
activate(n__incr(X)) -> incr(activate(X))
activate(n__oddNs()) -> oddNs()
activate(n__repItems(X)) -> repItems(activate(X))
activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
activate(n__zip(X1,X2)) -> zip(activate(X1),activate(X2))
cons(X1,X2) -> n__cons(X1,X2)
incr(X) -> n__incr(X)
oddNs() -> incr(pairNs())
oddNs() -> n__oddNs()
pairNs() -> cons(0(),n__incr(n__oddNs()))
repItems(X) -> n__repItems(X)
repItems(nil()) -> nil()
take(X1,X2) -> n__take(X1,X2)
take(0(),XS) -> nil()
zip(X,nil()) -> nil()
zip(X1,X2) -> n__zip(X1,X2)
zip(nil(),XS) -> nil()
- Signature:
{activate/1,cons/2,incr/1,oddNs/0,pairNs/0,repItems/1,tail/1,take/2,zip/2} / {0/0,n__cons/2,n__incr/1
,n__oddNs/0,n__repItems/1,n__take/2,n__zip/2,nil/0,pair/2,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,cons,incr,oddNs,pairNs,repItems,tail,take
,zip} and constructors {0,n__cons,n__incr,n__oddNs,n__repItems,n__take,n__zip,nil,pair,s}
+ Applied Processor:
Bounds {initialAutomaton = perSymbol, enrichment = match}
+ Details:
The problem is match-bounded by 4.
The enriched problem is compatible with follwoing automaton.
0_0() -> 1
0_0() -> 2
0_0() -> 20
0_1() -> 23
0_2() -> 25
0_3() -> 26
activate_0(1) -> 2
activate_0(5) -> 2
activate_0(6) -> 2
activate_0(7) -> 2
activate_0(8) -> 2
activate_0(9) -> 2
activate_0(10) -> 2
activate_0(11) -> 2
activate_0(13) -> 2
activate_0(16) -> 2
activate_1(1) -> 20
activate_1(5) -> 20
activate_1(6) -> 20
activate_1(7) -> 20
activate_1(8) -> 20
activate_1(9) -> 20
activate_1(10) -> 20
activate_1(11) -> 20
activate_1(13) -> 20
activate_1(16) -> 20
cons_0(1,1) -> 3
cons_0(1,5) -> 3
cons_0(1,6) -> 3
cons_0(1,7) -> 3
cons_0(1,8) -> 3
cons_0(1,9) -> 3
cons_0(1,10) -> 3
cons_0(1,11) -> 3
cons_0(1,13) -> 3
cons_0(1,16) -> 3
cons_0(5,1) -> 3
cons_0(5,5) -> 3
cons_0(5,6) -> 3
cons_0(5,7) -> 3
cons_0(5,8) -> 3
cons_0(5,9) -> 3
cons_0(5,10) -> 3
cons_0(5,11) -> 3
cons_0(5,13) -> 3
cons_0(5,16) -> 3
cons_0(6,1) -> 3
cons_0(6,5) -> 3
cons_0(6,6) -> 3
cons_0(6,7) -> 3
cons_0(6,8) -> 3
cons_0(6,9) -> 3
cons_0(6,10) -> 3
cons_0(6,11) -> 3
cons_0(6,13) -> 3
cons_0(6,16) -> 3
cons_0(7,1) -> 3
cons_0(7,5) -> 3
cons_0(7,6) -> 3
cons_0(7,7) -> 3
cons_0(7,8) -> 3
cons_0(7,9) -> 3
cons_0(7,10) -> 3
cons_0(7,11) -> 3
cons_0(7,13) -> 3
cons_0(7,16) -> 3
cons_0(8,1) -> 3
cons_0(8,5) -> 3
cons_0(8,6) -> 3
cons_0(8,7) -> 3
cons_0(8,8) -> 3
cons_0(8,9) -> 3
cons_0(8,10) -> 3
cons_0(8,11) -> 3
cons_0(8,13) -> 3
cons_0(8,16) -> 3
cons_0(9,1) -> 3
cons_0(9,5) -> 3
cons_0(9,6) -> 3
cons_0(9,7) -> 3
cons_0(9,8) -> 3
cons_0(9,9) -> 3
cons_0(9,10) -> 3
cons_0(9,11) -> 3
cons_0(9,13) -> 3
cons_0(9,16) -> 3
cons_0(10,1) -> 3
cons_0(10,5) -> 3
cons_0(10,6) -> 3
cons_0(10,7) -> 3
cons_0(10,8) -> 3
cons_0(10,9) -> 3
cons_0(10,10) -> 3
cons_0(10,11) -> 3
cons_0(10,13) -> 3
cons_0(10,16) -> 3
cons_0(11,1) -> 3
cons_0(11,5) -> 3
cons_0(11,6) -> 3
cons_0(11,7) -> 3
cons_0(11,8) -> 3
cons_0(11,9) -> 3
cons_0(11,10) -> 3
cons_0(11,11) -> 3
cons_0(11,13) -> 3
cons_0(11,16) -> 3
cons_0(13,1) -> 3
cons_0(13,5) -> 3
cons_0(13,6) -> 3
cons_0(13,7) -> 3
cons_0(13,8) -> 3
cons_0(13,9) -> 3
cons_0(13,10) -> 3
cons_0(13,11) -> 3
cons_0(13,13) -> 3
cons_0(13,16) -> 3
cons_0(16,1) -> 3
cons_0(16,5) -> 3
cons_0(16,6) -> 3
cons_0(16,7) -> 3
cons_0(16,8) -> 3
cons_0(16,9) -> 3
cons_0(16,10) -> 3
cons_0(16,11) -> 3
cons_0(16,13) -> 3
cons_0(16,16) -> 3
cons_1(20,1) -> 2
cons_1(20,1) -> 20
cons_1(20,5) -> 2
cons_1(20,5) -> 20
cons_1(20,6) -> 2
cons_1(20,6) -> 20
cons_1(20,7) -> 2
cons_1(20,7) -> 20
cons_1(20,8) -> 2
cons_1(20,8) -> 20
cons_1(20,9) -> 2
cons_1(20,9) -> 20
cons_1(20,10) -> 2
cons_1(20,10) -> 20
cons_1(20,11) -> 2
cons_1(20,11) -> 20
cons_1(20,13) -> 2
cons_1(20,13) -> 20
cons_1(20,16) -> 2
cons_1(20,16) -> 20
cons_1(23,24) -> 14
cons_2(25,20) -> 21
cons_3(26,27) -> 22
incr_0(1) -> 4
incr_0(5) -> 4
incr_0(6) -> 4
incr_0(7) -> 4
incr_0(8) -> 4
incr_0(9) -> 4
incr_0(10) -> 4
incr_0(11) -> 4
incr_0(13) -> 4
incr_0(16) -> 4
incr_1(20) -> 2
incr_1(20) -> 20
incr_1(21) -> 12
incr_2(22) -> 2
incr_2(22) -> 20
n__cons_0(1,1) -> 2
n__cons_0(1,1) -> 5
n__cons_0(1,1) -> 20
n__cons_0(1,5) -> 2
n__cons_0(1,5) -> 5
n__cons_0(1,5) -> 20
n__cons_0(1,6) -> 2
n__cons_0(1,6) -> 5
n__cons_0(1,6) -> 20
n__cons_0(1,7) -> 2
n__cons_0(1,7) -> 5
n__cons_0(1,7) -> 20
n__cons_0(1,8) -> 2
n__cons_0(1,8) -> 5
n__cons_0(1,8) -> 20
n__cons_0(1,9) -> 2
n__cons_0(1,9) -> 5
n__cons_0(1,9) -> 20
n__cons_0(1,10) -> 2
n__cons_0(1,10) -> 5
n__cons_0(1,10) -> 20
n__cons_0(1,11) -> 2
n__cons_0(1,11) -> 5
n__cons_0(1,11) -> 20
n__cons_0(1,13) -> 2
n__cons_0(1,13) -> 5
n__cons_0(1,13) -> 20
n__cons_0(1,16) -> 2
n__cons_0(1,16) -> 5
n__cons_0(1,16) -> 20
n__cons_0(5,1) -> 2
n__cons_0(5,1) -> 5
n__cons_0(5,1) -> 20
n__cons_0(5,5) -> 2
n__cons_0(5,5) -> 5
n__cons_0(5,5) -> 20
n__cons_0(5,6) -> 2
n__cons_0(5,6) -> 5
n__cons_0(5,6) -> 20
n__cons_0(5,7) -> 2
n__cons_0(5,7) -> 5
n__cons_0(5,7) -> 20
n__cons_0(5,8) -> 2
n__cons_0(5,8) -> 5
n__cons_0(5,8) -> 20
n__cons_0(5,9) -> 2
n__cons_0(5,9) -> 5
n__cons_0(5,9) -> 20
n__cons_0(5,10) -> 2
n__cons_0(5,10) -> 5
n__cons_0(5,10) -> 20
n__cons_0(5,11) -> 2
n__cons_0(5,11) -> 5
n__cons_0(5,11) -> 20
n__cons_0(5,13) -> 2
n__cons_0(5,13) -> 5
n__cons_0(5,13) -> 20
n__cons_0(5,16) -> 2
n__cons_0(5,16) -> 5
n__cons_0(5,16) -> 20
n__cons_0(6,1) -> 2
n__cons_0(6,1) -> 5
n__cons_0(6,1) -> 20
n__cons_0(6,5) -> 2
n__cons_0(6,5) -> 5
n__cons_0(6,5) -> 20
n__cons_0(6,6) -> 2
n__cons_0(6,6) -> 5
n__cons_0(6,6) -> 20
n__cons_0(6,7) -> 2
n__cons_0(6,7) -> 5
n__cons_0(6,7) -> 20
n__cons_0(6,8) -> 2
n__cons_0(6,8) -> 5
n__cons_0(6,8) -> 20
n__cons_0(6,9) -> 2
n__cons_0(6,9) -> 5
n__cons_0(6,9) -> 20
n__cons_0(6,10) -> 2
n__cons_0(6,10) -> 5
n__cons_0(6,10) -> 20
n__cons_0(6,11) -> 2
n__cons_0(6,11) -> 5
n__cons_0(6,11) -> 20
n__cons_0(6,13) -> 2
n__cons_0(6,13) -> 5
n__cons_0(6,13) -> 20
n__cons_0(6,16) -> 2
n__cons_0(6,16) -> 5
n__cons_0(6,16) -> 20
n__cons_0(7,1) -> 2
n__cons_0(7,1) -> 5
n__cons_0(7,1) -> 20
n__cons_0(7,5) -> 2
n__cons_0(7,5) -> 5
n__cons_0(7,5) -> 20
n__cons_0(7,6) -> 2
n__cons_0(7,6) -> 5
n__cons_0(7,6) -> 20
n__cons_0(7,7) -> 2
n__cons_0(7,7) -> 5
n__cons_0(7,7) -> 20
n__cons_0(7,8) -> 2
n__cons_0(7,8) -> 5
n__cons_0(7,8) -> 20
n__cons_0(7,9) -> 2
n__cons_0(7,9) -> 5
n__cons_0(7,9) -> 20
n__cons_0(7,10) -> 2
n__cons_0(7,10) -> 5
n__cons_0(7,10) -> 20
n__cons_0(7,11) -> 2
n__cons_0(7,11) -> 5
n__cons_0(7,11) -> 20
n__cons_0(7,13) -> 2
n__cons_0(7,13) -> 5
n__cons_0(7,13) -> 20
n__cons_0(7,16) -> 2
n__cons_0(7,16) -> 5
n__cons_0(7,16) -> 20
n__cons_0(8,1) -> 2
n__cons_0(8,1) -> 5
n__cons_0(8,1) -> 20
n__cons_0(8,5) -> 2
n__cons_0(8,5) -> 5
n__cons_0(8,5) -> 20
n__cons_0(8,6) -> 2
n__cons_0(8,6) -> 5
n__cons_0(8,6) -> 20
n__cons_0(8,7) -> 2
n__cons_0(8,7) -> 5
n__cons_0(8,7) -> 20
n__cons_0(8,8) -> 2
n__cons_0(8,8) -> 5
n__cons_0(8,8) -> 20
n__cons_0(8,9) -> 2
n__cons_0(8,9) -> 5
n__cons_0(8,9) -> 20
n__cons_0(8,10) -> 2
n__cons_0(8,10) -> 5
n__cons_0(8,10) -> 20
n__cons_0(8,11) -> 2
n__cons_0(8,11) -> 5
n__cons_0(8,11) -> 20
n__cons_0(8,13) -> 2
n__cons_0(8,13) -> 5
n__cons_0(8,13) -> 20
n__cons_0(8,16) -> 2
n__cons_0(8,16) -> 5
n__cons_0(8,16) -> 20
n__cons_0(9,1) -> 2
n__cons_0(9,1) -> 5
n__cons_0(9,1) -> 20
n__cons_0(9,5) -> 2
n__cons_0(9,5) -> 5
n__cons_0(9,5) -> 20
n__cons_0(9,6) -> 2
n__cons_0(9,6) -> 5
n__cons_0(9,6) -> 20
n__cons_0(9,7) -> 2
n__cons_0(9,7) -> 5
n__cons_0(9,7) -> 20
n__cons_0(9,8) -> 2
n__cons_0(9,8) -> 5
n__cons_0(9,8) -> 20
n__cons_0(9,9) -> 2
n__cons_0(9,9) -> 5
n__cons_0(9,9) -> 20
n__cons_0(9,10) -> 2
n__cons_0(9,10) -> 5
n__cons_0(9,10) -> 20
n__cons_0(9,11) -> 2
n__cons_0(9,11) -> 5
n__cons_0(9,11) -> 20
n__cons_0(9,13) -> 2
n__cons_0(9,13) -> 5
n__cons_0(9,13) -> 20
n__cons_0(9,16) -> 2
n__cons_0(9,16) -> 5
n__cons_0(9,16) -> 20
n__cons_0(10,1) -> 2
n__cons_0(10,1) -> 5
n__cons_0(10,1) -> 20
n__cons_0(10,5) -> 2
n__cons_0(10,5) -> 5
n__cons_0(10,5) -> 20
n__cons_0(10,6) -> 2
n__cons_0(10,6) -> 5
n__cons_0(10,6) -> 20
n__cons_0(10,7) -> 2
n__cons_0(10,7) -> 5
n__cons_0(10,7) -> 20
n__cons_0(10,8) -> 2
n__cons_0(10,8) -> 5
n__cons_0(10,8) -> 20
n__cons_0(10,9) -> 2
n__cons_0(10,9) -> 5
n__cons_0(10,9) -> 20
n__cons_0(10,10) -> 2
n__cons_0(10,10) -> 5
n__cons_0(10,10) -> 20
n__cons_0(10,11) -> 2
n__cons_0(10,11) -> 5
n__cons_0(10,11) -> 20
n__cons_0(10,13) -> 2
n__cons_0(10,13) -> 5
n__cons_0(10,13) -> 20
n__cons_0(10,16) -> 2
n__cons_0(10,16) -> 5
n__cons_0(10,16) -> 20
n__cons_0(11,1) -> 2
n__cons_0(11,1) -> 5
n__cons_0(11,1) -> 20
n__cons_0(11,5) -> 2
n__cons_0(11,5) -> 5
n__cons_0(11,5) -> 20
n__cons_0(11,6) -> 2
n__cons_0(11,6) -> 5
n__cons_0(11,6) -> 20
n__cons_0(11,7) -> 2
n__cons_0(11,7) -> 5
n__cons_0(11,7) -> 20
n__cons_0(11,8) -> 2
n__cons_0(11,8) -> 5
n__cons_0(11,8) -> 20
n__cons_0(11,9) -> 2
n__cons_0(11,9) -> 5
n__cons_0(11,9) -> 20
n__cons_0(11,10) -> 2
n__cons_0(11,10) -> 5
n__cons_0(11,10) -> 20
n__cons_0(11,11) -> 2
n__cons_0(11,11) -> 5
n__cons_0(11,11) -> 20
n__cons_0(11,13) -> 2
n__cons_0(11,13) -> 5
n__cons_0(11,13) -> 20
n__cons_0(11,16) -> 2
n__cons_0(11,16) -> 5
n__cons_0(11,16) -> 20
n__cons_0(13,1) -> 2
n__cons_0(13,1) -> 5
n__cons_0(13,1) -> 20
n__cons_0(13,5) -> 2
n__cons_0(13,5) -> 5
n__cons_0(13,5) -> 20
n__cons_0(13,6) -> 2
n__cons_0(13,6) -> 5
n__cons_0(13,6) -> 20
n__cons_0(13,7) -> 2
n__cons_0(13,7) -> 5
n__cons_0(13,7) -> 20
n__cons_0(13,8) -> 2
n__cons_0(13,8) -> 5
n__cons_0(13,8) -> 20
n__cons_0(13,9) -> 2
n__cons_0(13,9) -> 5
n__cons_0(13,9) -> 20
n__cons_0(13,10) -> 2
n__cons_0(13,10) -> 5
n__cons_0(13,10) -> 20
n__cons_0(13,11) -> 2
n__cons_0(13,11) -> 5
n__cons_0(13,11) -> 20
n__cons_0(13,13) -> 2
n__cons_0(13,13) -> 5
n__cons_0(13,13) -> 20
n__cons_0(13,16) -> 2
n__cons_0(13,16) -> 5
n__cons_0(13,16) -> 20
n__cons_0(16,1) -> 2
n__cons_0(16,1) -> 5
n__cons_0(16,1) -> 20
n__cons_0(16,5) -> 2
n__cons_0(16,5) -> 5
n__cons_0(16,5) -> 20
n__cons_0(16,6) -> 2
n__cons_0(16,6) -> 5
n__cons_0(16,6) -> 20
n__cons_0(16,7) -> 2
n__cons_0(16,7) -> 5
n__cons_0(16,7) -> 20
n__cons_0(16,8) -> 2
n__cons_0(16,8) -> 5
n__cons_0(16,8) -> 20
n__cons_0(16,9) -> 2
n__cons_0(16,9) -> 5
n__cons_0(16,9) -> 20
n__cons_0(16,10) -> 2
n__cons_0(16,10) -> 5
n__cons_0(16,10) -> 20
n__cons_0(16,11) -> 2
n__cons_0(16,11) -> 5
n__cons_0(16,11) -> 20
n__cons_0(16,13) -> 2
n__cons_0(16,13) -> 5
n__cons_0(16,13) -> 20
n__cons_0(16,16) -> 2
n__cons_0(16,16) -> 5
n__cons_0(16,16) -> 20
n__cons_1(1,1) -> 3
n__cons_1(1,5) -> 3
n__cons_1(1,6) -> 3
n__cons_1(1,7) -> 3
n__cons_1(1,8) -> 3
n__cons_1(1,9) -> 3
n__cons_1(1,10) -> 3
n__cons_1(1,11) -> 3
n__cons_1(1,13) -> 3
n__cons_1(1,16) -> 3
n__cons_1(5,1) -> 3
n__cons_1(5,5) -> 3
n__cons_1(5,6) -> 3
n__cons_1(5,7) -> 3
n__cons_1(5,8) -> 3
n__cons_1(5,9) -> 3
n__cons_1(5,10) -> 3
n__cons_1(5,11) -> 3
n__cons_1(5,13) -> 3
n__cons_1(5,16) -> 3
n__cons_1(6,1) -> 3
n__cons_1(6,5) -> 3
n__cons_1(6,6) -> 3
n__cons_1(6,7) -> 3
n__cons_1(6,8) -> 3
n__cons_1(6,9) -> 3
n__cons_1(6,10) -> 3
n__cons_1(6,11) -> 3
n__cons_1(6,13) -> 3
n__cons_1(6,16) -> 3
n__cons_1(7,1) -> 3
n__cons_1(7,5) -> 3
n__cons_1(7,6) -> 3
n__cons_1(7,7) -> 3
n__cons_1(7,8) -> 3
n__cons_1(7,9) -> 3
n__cons_1(7,10) -> 3
n__cons_1(7,11) -> 3
n__cons_1(7,13) -> 3
n__cons_1(7,16) -> 3
n__cons_1(8,1) -> 3
n__cons_1(8,5) -> 3
n__cons_1(8,6) -> 3
n__cons_1(8,7) -> 3
n__cons_1(8,8) -> 3
n__cons_1(8,9) -> 3
n__cons_1(8,10) -> 3
n__cons_1(8,11) -> 3
n__cons_1(8,13) -> 3
n__cons_1(8,16) -> 3
n__cons_1(9,1) -> 3
n__cons_1(9,5) -> 3
n__cons_1(9,6) -> 3
n__cons_1(9,7) -> 3
n__cons_1(9,8) -> 3
n__cons_1(9,9) -> 3
n__cons_1(9,10) -> 3
n__cons_1(9,11) -> 3
n__cons_1(9,13) -> 3
n__cons_1(9,16) -> 3
n__cons_1(10,1) -> 3
n__cons_1(10,5) -> 3
n__cons_1(10,6) -> 3
n__cons_1(10,7) -> 3
n__cons_1(10,8) -> 3
n__cons_1(10,9) -> 3
n__cons_1(10,10) -> 3
n__cons_1(10,11) -> 3
n__cons_1(10,13) -> 3
n__cons_1(10,16) -> 3
n__cons_1(11,1) -> 3
n__cons_1(11,5) -> 3
n__cons_1(11,6) -> 3
n__cons_1(11,7) -> 3
n__cons_1(11,8) -> 3
n__cons_1(11,9) -> 3
n__cons_1(11,10) -> 3
n__cons_1(11,11) -> 3
n__cons_1(11,13) -> 3
n__cons_1(11,16) -> 3
n__cons_1(13,1) -> 3
n__cons_1(13,5) -> 3
n__cons_1(13,6) -> 3
n__cons_1(13,7) -> 3
n__cons_1(13,8) -> 3
n__cons_1(13,9) -> 3
n__cons_1(13,10) -> 3
n__cons_1(13,11) -> 3
n__cons_1(13,13) -> 3
n__cons_1(13,16) -> 3
n__cons_1(16,1) -> 3
n__cons_1(16,5) -> 3
n__cons_1(16,6) -> 3
n__cons_1(16,7) -> 3
n__cons_1(16,8) -> 3
n__cons_1(16,9) -> 3
n__cons_1(16,10) -> 3
n__cons_1(16,11) -> 3
n__cons_1(16,13) -> 3
n__cons_1(16,16) -> 3
n__cons_2(20,1) -> 2
n__cons_2(20,1) -> 20
n__cons_2(20,5) -> 2
n__cons_2(20,5) -> 20
n__cons_2(20,6) -> 2
n__cons_2(20,6) -> 20
n__cons_2(20,7) -> 2
n__cons_2(20,7) -> 20
n__cons_2(20,8) -> 2
n__cons_2(20,8) -> 20
n__cons_2(20,9) -> 2
n__cons_2(20,9) -> 20
n__cons_2(20,10) -> 2
n__cons_2(20,10) -> 20
n__cons_2(20,11) -> 2
n__cons_2(20,11) -> 20
n__cons_2(20,13) -> 2
n__cons_2(20,13) -> 20
n__cons_2(20,16) -> 2
n__cons_2(20,16) -> 20
n__cons_2(23,24) -> 14
n__cons_3(25,20) -> 21
n__cons_4(26,27) -> 22
n__incr_0(1) -> 2
n__incr_0(1) -> 6
n__incr_0(1) -> 20
n__incr_0(5) -> 2
n__incr_0(5) -> 6
n__incr_0(5) -> 20
n__incr_0(6) -> 2
n__incr_0(6) -> 6
n__incr_0(6) -> 20
n__incr_0(7) -> 2
n__incr_0(7) -> 6
n__incr_0(7) -> 20
n__incr_0(8) -> 2
n__incr_0(8) -> 6
n__incr_0(8) -> 20
n__incr_0(9) -> 2
n__incr_0(9) -> 6
n__incr_0(9) -> 20
n__incr_0(10) -> 2
n__incr_0(10) -> 6
n__incr_0(10) -> 20
n__incr_0(11) -> 2
n__incr_0(11) -> 6
n__incr_0(11) -> 20
n__incr_0(13) -> 2
n__incr_0(13) -> 6
n__incr_0(13) -> 20
n__incr_0(16) -> 2
n__incr_0(16) -> 6
n__incr_0(16) -> 20
n__incr_1(1) -> 4
n__incr_1(5) -> 4
n__incr_1(6) -> 4
n__incr_1(7) -> 4
n__incr_1(8) -> 4
n__incr_1(9) -> 4
n__incr_1(10) -> 4
n__incr_1(11) -> 4
n__incr_1(12) -> 24
n__incr_1(13) -> 4
n__incr_1(16) -> 4
n__incr_2(20) -> 2
n__incr_2(20) -> 20
n__incr_2(21) -> 12
n__incr_3(22) -> 2
n__incr_3(22) -> 20
n__incr_3(28) -> 27
n__oddNs_0() -> 2
n__oddNs_0() -> 7
n__oddNs_0() -> 20
n__oddNs_1() -> 12
n__oddNs_2() -> 2
n__oddNs_2() -> 20
n__oddNs_3() -> 28
n__repItems_0(1) -> 2
n__repItems_0(1) -> 8
n__repItems_0(1) -> 20
n__repItems_0(5) -> 2
n__repItems_0(5) -> 8
n__repItems_0(5) -> 20
n__repItems_0(6) -> 2
n__repItems_0(6) -> 8
n__repItems_0(6) -> 20
n__repItems_0(7) -> 2
n__repItems_0(7) -> 8
n__repItems_0(7) -> 20
n__repItems_0(8) -> 2
n__repItems_0(8) -> 8
n__repItems_0(8) -> 20
n__repItems_0(9) -> 2
n__repItems_0(9) -> 8
n__repItems_0(9) -> 20
n__repItems_0(10) -> 2
n__repItems_0(10) -> 8
n__repItems_0(10) -> 20
n__repItems_0(11) -> 2
n__repItems_0(11) -> 8
n__repItems_0(11) -> 20
n__repItems_0(13) -> 2
n__repItems_0(13) -> 8
n__repItems_0(13) -> 20
n__repItems_0(16) -> 2
n__repItems_0(16) -> 8
n__repItems_0(16) -> 20
n__repItems_1(1) -> 15
n__repItems_1(5) -> 15
n__repItems_1(6) -> 15
n__repItems_1(7) -> 15
n__repItems_1(8) -> 15
n__repItems_1(9) -> 15
n__repItems_1(10) -> 15
n__repItems_1(11) -> 15
n__repItems_1(13) -> 15
n__repItems_1(16) -> 15
n__repItems_2(20) -> 2
n__repItems_2(20) -> 20
n__take_0(1,1) -> 2
n__take_0(1,1) -> 9
n__take_0(1,1) -> 20
n__take_0(1,5) -> 2
n__take_0(1,5) -> 9
n__take_0(1,5) -> 20
n__take_0(1,6) -> 2
n__take_0(1,6) -> 9
n__take_0(1,6) -> 20
n__take_0(1,7) -> 2
n__take_0(1,7) -> 9
n__take_0(1,7) -> 20
n__take_0(1,8) -> 2
n__take_0(1,8) -> 9
n__take_0(1,8) -> 20
n__take_0(1,9) -> 2
n__take_0(1,9) -> 9
n__take_0(1,9) -> 20
n__take_0(1,10) -> 2
n__take_0(1,10) -> 9
n__take_0(1,10) -> 20
n__take_0(1,11) -> 2
n__take_0(1,11) -> 9
n__take_0(1,11) -> 20
n__take_0(1,13) -> 2
n__take_0(1,13) -> 9
n__take_0(1,13) -> 20
n__take_0(1,16) -> 2
n__take_0(1,16) -> 9
n__take_0(1,16) -> 20
n__take_0(5,1) -> 2
n__take_0(5,1) -> 9
n__take_0(5,1) -> 20
n__take_0(5,5) -> 2
n__take_0(5,5) -> 9
n__take_0(5,5) -> 20
n__take_0(5,6) -> 2
n__take_0(5,6) -> 9
n__take_0(5,6) -> 20
n__take_0(5,7) -> 2
n__take_0(5,7) -> 9
n__take_0(5,7) -> 20
n__take_0(5,8) -> 2
n__take_0(5,8) -> 9
n__take_0(5,8) -> 20
n__take_0(5,9) -> 2
n__take_0(5,9) -> 9
n__take_0(5,9) -> 20
n__take_0(5,10) -> 2
n__take_0(5,10) -> 9
n__take_0(5,10) -> 20
n__take_0(5,11) -> 2
n__take_0(5,11) -> 9
n__take_0(5,11) -> 20
n__take_0(5,13) -> 2
n__take_0(5,13) -> 9
n__take_0(5,13) -> 20
n__take_0(5,16) -> 2
n__take_0(5,16) -> 9
n__take_0(5,16) -> 20
n__take_0(6,1) -> 2
n__take_0(6,1) -> 9
n__take_0(6,1) -> 20
n__take_0(6,5) -> 2
n__take_0(6,5) -> 9
n__take_0(6,5) -> 20
n__take_0(6,6) -> 2
n__take_0(6,6) -> 9
n__take_0(6,6) -> 20
n__take_0(6,7) -> 2
n__take_0(6,7) -> 9
n__take_0(6,7) -> 20
n__take_0(6,8) -> 2
n__take_0(6,8) -> 9
n__take_0(6,8) -> 20
n__take_0(6,9) -> 2
n__take_0(6,9) -> 9
n__take_0(6,9) -> 20
n__take_0(6,10) -> 2
n__take_0(6,10) -> 9
n__take_0(6,10) -> 20
n__take_0(6,11) -> 2
n__take_0(6,11) -> 9
n__take_0(6,11) -> 20
n__take_0(6,13) -> 2
n__take_0(6,13) -> 9
n__take_0(6,13) -> 20
n__take_0(6,16) -> 2
n__take_0(6,16) -> 9
n__take_0(6,16) -> 20
n__take_0(7,1) -> 2
n__take_0(7,1) -> 9
n__take_0(7,1) -> 20
n__take_0(7,5) -> 2
n__take_0(7,5) -> 9
n__take_0(7,5) -> 20
n__take_0(7,6) -> 2
n__take_0(7,6) -> 9
n__take_0(7,6) -> 20
n__take_0(7,7) -> 2
n__take_0(7,7) -> 9
n__take_0(7,7) -> 20
n__take_0(7,8) -> 2
n__take_0(7,8) -> 9
n__take_0(7,8) -> 20
n__take_0(7,9) -> 2
n__take_0(7,9) -> 9
n__take_0(7,9) -> 20
n__take_0(7,10) -> 2
n__take_0(7,10) -> 9
n__take_0(7,10) -> 20
n__take_0(7,11) -> 2
n__take_0(7,11) -> 9
n__take_0(7,11) -> 20
n__take_0(7,13) -> 2
n__take_0(7,13) -> 9
n__take_0(7,13) -> 20
n__take_0(7,16) -> 2
n__take_0(7,16) -> 9
n__take_0(7,16) -> 20
n__take_0(8,1) -> 2
n__take_0(8,1) -> 9
n__take_0(8,1) -> 20
n__take_0(8,5) -> 2
n__take_0(8,5) -> 9
n__take_0(8,5) -> 20
n__take_0(8,6) -> 2
n__take_0(8,6) -> 9
n__take_0(8,6) -> 20
n__take_0(8,7) -> 2
n__take_0(8,7) -> 9
n__take_0(8,7) -> 20
n__take_0(8,8) -> 2
n__take_0(8,8) -> 9
n__take_0(8,8) -> 20
n__take_0(8,9) -> 2
n__take_0(8,9) -> 9
n__take_0(8,9) -> 20
n__take_0(8,10) -> 2
n__take_0(8,10) -> 9
n__take_0(8,10) -> 20
n__take_0(8,11) -> 2
n__take_0(8,11) -> 9
n__take_0(8,11) -> 20
n__take_0(8,13) -> 2
n__take_0(8,13) -> 9
n__take_0(8,13) -> 20
n__take_0(8,16) -> 2
n__take_0(8,16) -> 9
n__take_0(8,16) -> 20
n__take_0(9,1) -> 2
n__take_0(9,1) -> 9
n__take_0(9,1) -> 20
n__take_0(9,5) -> 2
n__take_0(9,5) -> 9
n__take_0(9,5) -> 20
n__take_0(9,6) -> 2
n__take_0(9,6) -> 9
n__take_0(9,6) -> 20
n__take_0(9,7) -> 2
n__take_0(9,7) -> 9
n__take_0(9,7) -> 20
n__take_0(9,8) -> 2
n__take_0(9,8) -> 9
n__take_0(9,8) -> 20
n__take_0(9,9) -> 2
n__take_0(9,9) -> 9
n__take_0(9,9) -> 20
n__take_0(9,10) -> 2
n__take_0(9,10) -> 9
n__take_0(9,10) -> 20
n__take_0(9,11) -> 2
n__take_0(9,11) -> 9
n__take_0(9,11) -> 20
n__take_0(9,13) -> 2
n__take_0(9,13) -> 9
n__take_0(9,13) -> 20
n__take_0(9,16) -> 2
n__take_0(9,16) -> 9
n__take_0(9,16) -> 20
n__take_0(10,1) -> 2
n__take_0(10,1) -> 9
n__take_0(10,1) -> 20
n__take_0(10,5) -> 2
n__take_0(10,5) -> 9
n__take_0(10,5) -> 20
n__take_0(10,6) -> 2
n__take_0(10,6) -> 9
n__take_0(10,6) -> 20
n__take_0(10,7) -> 2
n__take_0(10,7) -> 9
n__take_0(10,7) -> 20
n__take_0(10,8) -> 2
n__take_0(10,8) -> 9
n__take_0(10,8) -> 20
n__take_0(10,9) -> 2
n__take_0(10,9) -> 9
n__take_0(10,9) -> 20
n__take_0(10,10) -> 2
n__take_0(10,10) -> 9
n__take_0(10,10) -> 20
n__take_0(10,11) -> 2
n__take_0(10,11) -> 9
n__take_0(10,11) -> 20
n__take_0(10,13) -> 2
n__take_0(10,13) -> 9
n__take_0(10,13) -> 20
n__take_0(10,16) -> 2
n__take_0(10,16) -> 9
n__take_0(10,16) -> 20
n__take_0(11,1) -> 2
n__take_0(11,1) -> 9
n__take_0(11,1) -> 20
n__take_0(11,5) -> 2
n__take_0(11,5) -> 9
n__take_0(11,5) -> 20
n__take_0(11,6) -> 2
n__take_0(11,6) -> 9
n__take_0(11,6) -> 20
n__take_0(11,7) -> 2
n__take_0(11,7) -> 9
n__take_0(11,7) -> 20
n__take_0(11,8) -> 2
n__take_0(11,8) -> 9
n__take_0(11,8) -> 20
n__take_0(11,9) -> 2
n__take_0(11,9) -> 9
n__take_0(11,9) -> 20
n__take_0(11,10) -> 2
n__take_0(11,10) -> 9
n__take_0(11,10) -> 20
n__take_0(11,11) -> 2
n__take_0(11,11) -> 9
n__take_0(11,11) -> 20
n__take_0(11,13) -> 2
n__take_0(11,13) -> 9
n__take_0(11,13) -> 20
n__take_0(11,16) -> 2
n__take_0(11,16) -> 9
n__take_0(11,16) -> 20
n__take_0(13,1) -> 2
n__take_0(13,1) -> 9
n__take_0(13,1) -> 20
n__take_0(13,5) -> 2
n__take_0(13,5) -> 9
n__take_0(13,5) -> 20
n__take_0(13,6) -> 2
n__take_0(13,6) -> 9
n__take_0(13,6) -> 20
n__take_0(13,7) -> 2
n__take_0(13,7) -> 9
n__take_0(13,7) -> 20
n__take_0(13,8) -> 2
n__take_0(13,8) -> 9
n__take_0(13,8) -> 20
n__take_0(13,9) -> 2
n__take_0(13,9) -> 9
n__take_0(13,9) -> 20
n__take_0(13,10) -> 2
n__take_0(13,10) -> 9
n__take_0(13,10) -> 20
n__take_0(13,11) -> 2
n__take_0(13,11) -> 9
n__take_0(13,11) -> 20
n__take_0(13,13) -> 2
n__take_0(13,13) -> 9
n__take_0(13,13) -> 20
n__take_0(13,16) -> 2
n__take_0(13,16) -> 9
n__take_0(13,16) -> 20
n__take_0(16,1) -> 2
n__take_0(16,1) -> 9
n__take_0(16,1) -> 20
n__take_0(16,5) -> 2
n__take_0(16,5) -> 9
n__take_0(16,5) -> 20
n__take_0(16,6) -> 2
n__take_0(16,6) -> 9
n__take_0(16,6) -> 20
n__take_0(16,7) -> 2
n__take_0(16,7) -> 9
n__take_0(16,7) -> 20
n__take_0(16,8) -> 2
n__take_0(16,8) -> 9
n__take_0(16,8) -> 20
n__take_0(16,9) -> 2
n__take_0(16,9) -> 9
n__take_0(16,9) -> 20
n__take_0(16,10) -> 2
n__take_0(16,10) -> 9
n__take_0(16,10) -> 20
n__take_0(16,11) -> 2
n__take_0(16,11) -> 9
n__take_0(16,11) -> 20
n__take_0(16,13) -> 2
n__take_0(16,13) -> 9
n__take_0(16,13) -> 20
n__take_0(16,16) -> 2
n__take_0(16,16) -> 9
n__take_0(16,16) -> 20
n__take_1(1,1) -> 18
n__take_1(1,5) -> 18
n__take_1(1,6) -> 18
n__take_1(1,7) -> 18
n__take_1(1,8) -> 18
n__take_1(1,9) -> 18
n__take_1(1,10) -> 18
n__take_1(1,11) -> 18
n__take_1(1,13) -> 18
n__take_1(1,16) -> 18
n__take_1(5,1) -> 18
n__take_1(5,5) -> 18
n__take_1(5,6) -> 18
n__take_1(5,7) -> 18
n__take_1(5,8) -> 18
n__take_1(5,9) -> 18
n__take_1(5,10) -> 18
n__take_1(5,11) -> 18
n__take_1(5,13) -> 18
n__take_1(5,16) -> 18
n__take_1(6,1) -> 18
n__take_1(6,5) -> 18
n__take_1(6,6) -> 18
n__take_1(6,7) -> 18
n__take_1(6,8) -> 18
n__take_1(6,9) -> 18
n__take_1(6,10) -> 18
n__take_1(6,11) -> 18
n__take_1(6,13) -> 18
n__take_1(6,16) -> 18
n__take_1(7,1) -> 18
n__take_1(7,5) -> 18
n__take_1(7,6) -> 18
n__take_1(7,7) -> 18
n__take_1(7,8) -> 18
n__take_1(7,9) -> 18
n__take_1(7,10) -> 18
n__take_1(7,11) -> 18
n__take_1(7,13) -> 18
n__take_1(7,16) -> 18
n__take_1(8,1) -> 18
n__take_1(8,5) -> 18
n__take_1(8,6) -> 18
n__take_1(8,7) -> 18
n__take_1(8,8) -> 18
n__take_1(8,9) -> 18
n__take_1(8,10) -> 18
n__take_1(8,11) -> 18
n__take_1(8,13) -> 18
n__take_1(8,16) -> 18
n__take_1(9,1) -> 18
n__take_1(9,5) -> 18
n__take_1(9,6) -> 18
n__take_1(9,7) -> 18
n__take_1(9,8) -> 18
n__take_1(9,9) -> 18
n__take_1(9,10) -> 18
n__take_1(9,11) -> 18
n__take_1(9,13) -> 18
n__take_1(9,16) -> 18
n__take_1(10,1) -> 18
n__take_1(10,5) -> 18
n__take_1(10,6) -> 18
n__take_1(10,7) -> 18
n__take_1(10,8) -> 18
n__take_1(10,9) -> 18
n__take_1(10,10) -> 18
n__take_1(10,11) -> 18
n__take_1(10,13) -> 18
n__take_1(10,16) -> 18
n__take_1(11,1) -> 18
n__take_1(11,5) -> 18
n__take_1(11,6) -> 18
n__take_1(11,7) -> 18
n__take_1(11,8) -> 18
n__take_1(11,9) -> 18
n__take_1(11,10) -> 18
n__take_1(11,11) -> 18
n__take_1(11,13) -> 18
n__take_1(11,16) -> 18
n__take_1(13,1) -> 18
n__take_1(13,5) -> 18
n__take_1(13,6) -> 18
n__take_1(13,7) -> 18
n__take_1(13,8) -> 18
n__take_1(13,9) -> 18
n__take_1(13,10) -> 18
n__take_1(13,11) -> 18
n__take_1(13,13) -> 18
n__take_1(13,16) -> 18
n__take_1(16,1) -> 18
n__take_1(16,5) -> 18
n__take_1(16,6) -> 18
n__take_1(16,7) -> 18
n__take_1(16,8) -> 18
n__take_1(16,9) -> 18
n__take_1(16,10) -> 18
n__take_1(16,11) -> 18
n__take_1(16,13) -> 18
n__take_1(16,16) -> 18
n__take_2(20,20) -> 2
n__take_2(20,20) -> 20
n__zip_0(1,1) -> 2
n__zip_0(1,1) -> 10
n__zip_0(1,1) -> 20
n__zip_0(1,5) -> 2
n__zip_0(1,5) -> 10
n__zip_0(1,5) -> 20
n__zip_0(1,6) -> 2
n__zip_0(1,6) -> 10
n__zip_0(1,6) -> 20
n__zip_0(1,7) -> 2
n__zip_0(1,7) -> 10
n__zip_0(1,7) -> 20
n__zip_0(1,8) -> 2
n__zip_0(1,8) -> 10
n__zip_0(1,8) -> 20
n__zip_0(1,9) -> 2
n__zip_0(1,9) -> 10
n__zip_0(1,9) -> 20
n__zip_0(1,10) -> 2
n__zip_0(1,10) -> 10
n__zip_0(1,10) -> 20
n__zip_0(1,11) -> 2
n__zip_0(1,11) -> 10
n__zip_0(1,11) -> 20
n__zip_0(1,13) -> 2
n__zip_0(1,13) -> 10
n__zip_0(1,13) -> 20
n__zip_0(1,16) -> 2
n__zip_0(1,16) -> 10
n__zip_0(1,16) -> 20
n__zip_0(5,1) -> 2
n__zip_0(5,1) -> 10
n__zip_0(5,1) -> 20
n__zip_0(5,5) -> 2
n__zip_0(5,5) -> 10
n__zip_0(5,5) -> 20
n__zip_0(5,6) -> 2
n__zip_0(5,6) -> 10
n__zip_0(5,6) -> 20
n__zip_0(5,7) -> 2
n__zip_0(5,7) -> 10
n__zip_0(5,7) -> 20
n__zip_0(5,8) -> 2
n__zip_0(5,8) -> 10
n__zip_0(5,8) -> 20
n__zip_0(5,9) -> 2
n__zip_0(5,9) -> 10
n__zip_0(5,9) -> 20
n__zip_0(5,10) -> 2
n__zip_0(5,10) -> 10
n__zip_0(5,10) -> 20
n__zip_0(5,11) -> 2
n__zip_0(5,11) -> 10
n__zip_0(5,11) -> 20
n__zip_0(5,13) -> 2
n__zip_0(5,13) -> 10
n__zip_0(5,13) -> 20
n__zip_0(5,16) -> 2
n__zip_0(5,16) -> 10
n__zip_0(5,16) -> 20
n__zip_0(6,1) -> 2
n__zip_0(6,1) -> 10
n__zip_0(6,1) -> 20
n__zip_0(6,5) -> 2
n__zip_0(6,5) -> 10
n__zip_0(6,5) -> 20
n__zip_0(6,6) -> 2
n__zip_0(6,6) -> 10
n__zip_0(6,6) -> 20
n__zip_0(6,7) -> 2
n__zip_0(6,7) -> 10
n__zip_0(6,7) -> 20
n__zip_0(6,8) -> 2
n__zip_0(6,8) -> 10
n__zip_0(6,8) -> 20
n__zip_0(6,9) -> 2
n__zip_0(6,9) -> 10
n__zip_0(6,9) -> 20
n__zip_0(6,10) -> 2
n__zip_0(6,10) -> 10
n__zip_0(6,10) -> 20
n__zip_0(6,11) -> 2
n__zip_0(6,11) -> 10
n__zip_0(6,11) -> 20
n__zip_0(6,13) -> 2
n__zip_0(6,13) -> 10
n__zip_0(6,13) -> 20
n__zip_0(6,16) -> 2
n__zip_0(6,16) -> 10
n__zip_0(6,16) -> 20
n__zip_0(7,1) -> 2
n__zip_0(7,1) -> 10
n__zip_0(7,1) -> 20
n__zip_0(7,5) -> 2
n__zip_0(7,5) -> 10
n__zip_0(7,5) -> 20
n__zip_0(7,6) -> 2
n__zip_0(7,6) -> 10
n__zip_0(7,6) -> 20
n__zip_0(7,7) -> 2
n__zip_0(7,7) -> 10
n__zip_0(7,7) -> 20
n__zip_0(7,8) -> 2
n__zip_0(7,8) -> 10
n__zip_0(7,8) -> 20
n__zip_0(7,9) -> 2
n__zip_0(7,9) -> 10
n__zip_0(7,9) -> 20
n__zip_0(7,10) -> 2
n__zip_0(7,10) -> 10
n__zip_0(7,10) -> 20
n__zip_0(7,11) -> 2
n__zip_0(7,11) -> 10
n__zip_0(7,11) -> 20
n__zip_0(7,13) -> 2
n__zip_0(7,13) -> 10
n__zip_0(7,13) -> 20
n__zip_0(7,16) -> 2
n__zip_0(7,16) -> 10
n__zip_0(7,16) -> 20
n__zip_0(8,1) -> 2
n__zip_0(8,1) -> 10
n__zip_0(8,1) -> 20
n__zip_0(8,5) -> 2
n__zip_0(8,5) -> 10
n__zip_0(8,5) -> 20
n__zip_0(8,6) -> 2
n__zip_0(8,6) -> 10
n__zip_0(8,6) -> 20
n__zip_0(8,7) -> 2
n__zip_0(8,7) -> 10
n__zip_0(8,7) -> 20
n__zip_0(8,8) -> 2
n__zip_0(8,8) -> 10
n__zip_0(8,8) -> 20
n__zip_0(8,9) -> 2
n__zip_0(8,9) -> 10
n__zip_0(8,9) -> 20
n__zip_0(8,10) -> 2
n__zip_0(8,10) -> 10
n__zip_0(8,10) -> 20
n__zip_0(8,11) -> 2
n__zip_0(8,11) -> 10
n__zip_0(8,11) -> 20
n__zip_0(8,13) -> 2
n__zip_0(8,13) -> 10
n__zip_0(8,13) -> 20
n__zip_0(8,16) -> 2
n__zip_0(8,16) -> 10
n__zip_0(8,16) -> 20
n__zip_0(9,1) -> 2
n__zip_0(9,1) -> 10
n__zip_0(9,1) -> 20
n__zip_0(9,5) -> 2
n__zip_0(9,5) -> 10
n__zip_0(9,5) -> 20
n__zip_0(9,6) -> 2
n__zip_0(9,6) -> 10
n__zip_0(9,6) -> 20
n__zip_0(9,7) -> 2
n__zip_0(9,7) -> 10
n__zip_0(9,7) -> 20
n__zip_0(9,8) -> 2
n__zip_0(9,8) -> 10
n__zip_0(9,8) -> 20
n__zip_0(9,9) -> 2
n__zip_0(9,9) -> 10
n__zip_0(9,9) -> 20
n__zip_0(9,10) -> 2
n__zip_0(9,10) -> 10
n__zip_0(9,10) -> 20
n__zip_0(9,11) -> 2
n__zip_0(9,11) -> 10
n__zip_0(9,11) -> 20
n__zip_0(9,13) -> 2
n__zip_0(9,13) -> 10
n__zip_0(9,13) -> 20
n__zip_0(9,16) -> 2
n__zip_0(9,16) -> 10
n__zip_0(9,16) -> 20
n__zip_0(10,1) -> 2
n__zip_0(10,1) -> 10
n__zip_0(10,1) -> 20
n__zip_0(10,5) -> 2
n__zip_0(10,5) -> 10
n__zip_0(10,5) -> 20
n__zip_0(10,6) -> 2
n__zip_0(10,6) -> 10
n__zip_0(10,6) -> 20
n__zip_0(10,7) -> 2
n__zip_0(10,7) -> 10
n__zip_0(10,7) -> 20
n__zip_0(10,8) -> 2
n__zip_0(10,8) -> 10
n__zip_0(10,8) -> 20
n__zip_0(10,9) -> 2
n__zip_0(10,9) -> 10
n__zip_0(10,9) -> 20
n__zip_0(10,10) -> 2
n__zip_0(10,10) -> 10
n__zip_0(10,10) -> 20
n__zip_0(10,11) -> 2
n__zip_0(10,11) -> 10
n__zip_0(10,11) -> 20
n__zip_0(10,13) -> 2
n__zip_0(10,13) -> 10
n__zip_0(10,13) -> 20
n__zip_0(10,16) -> 2
n__zip_0(10,16) -> 10
n__zip_0(10,16) -> 20
n__zip_0(11,1) -> 2
n__zip_0(11,1) -> 10
n__zip_0(11,1) -> 20
n__zip_0(11,5) -> 2
n__zip_0(11,5) -> 10
n__zip_0(11,5) -> 20
n__zip_0(11,6) -> 2
n__zip_0(11,6) -> 10
n__zip_0(11,6) -> 20
n__zip_0(11,7) -> 2
n__zip_0(11,7) -> 10
n__zip_0(11,7) -> 20
n__zip_0(11,8) -> 2
n__zip_0(11,8) -> 10
n__zip_0(11,8) -> 20
n__zip_0(11,9) -> 2
n__zip_0(11,9) -> 10
n__zip_0(11,9) -> 20
n__zip_0(11,10) -> 2
n__zip_0(11,10) -> 10
n__zip_0(11,10) -> 20
n__zip_0(11,11) -> 2
n__zip_0(11,11) -> 10
n__zip_0(11,11) -> 20
n__zip_0(11,13) -> 2
n__zip_0(11,13) -> 10
n__zip_0(11,13) -> 20
n__zip_0(11,16) -> 2
n__zip_0(11,16) -> 10
n__zip_0(11,16) -> 20
n__zip_0(13,1) -> 2
n__zip_0(13,1) -> 10
n__zip_0(13,1) -> 20
n__zip_0(13,5) -> 2
n__zip_0(13,5) -> 10
n__zip_0(13,5) -> 20
n__zip_0(13,6) -> 2
n__zip_0(13,6) -> 10
n__zip_0(13,6) -> 20
n__zip_0(13,7) -> 2
n__zip_0(13,7) -> 10
n__zip_0(13,7) -> 20
n__zip_0(13,8) -> 2
n__zip_0(13,8) -> 10
n__zip_0(13,8) -> 20
n__zip_0(13,9) -> 2
n__zip_0(13,9) -> 10
n__zip_0(13,9) -> 20
n__zip_0(13,10) -> 2
n__zip_0(13,10) -> 10
n__zip_0(13,10) -> 20
n__zip_0(13,11) -> 2
n__zip_0(13,11) -> 10
n__zip_0(13,11) -> 20
n__zip_0(13,13) -> 2
n__zip_0(13,13) -> 10
n__zip_0(13,13) -> 20
n__zip_0(13,16) -> 2
n__zip_0(13,16) -> 10
n__zip_0(13,16) -> 20
n__zip_0(16,1) -> 2
n__zip_0(16,1) -> 10
n__zip_0(16,1) -> 20
n__zip_0(16,5) -> 2
n__zip_0(16,5) -> 10
n__zip_0(16,5) -> 20
n__zip_0(16,6) -> 2
n__zip_0(16,6) -> 10
n__zip_0(16,6) -> 20
n__zip_0(16,7) -> 2
n__zip_0(16,7) -> 10
n__zip_0(16,7) -> 20
n__zip_0(16,8) -> 2
n__zip_0(16,8) -> 10
n__zip_0(16,8) -> 20
n__zip_0(16,9) -> 2
n__zip_0(16,9) -> 10
n__zip_0(16,9) -> 20
n__zip_0(16,10) -> 2
n__zip_0(16,10) -> 10
n__zip_0(16,10) -> 20
n__zip_0(16,11) -> 2
n__zip_0(16,11) -> 10
n__zip_0(16,11) -> 20
n__zip_0(16,13) -> 2
n__zip_0(16,13) -> 10
n__zip_0(16,13) -> 20
n__zip_0(16,16) -> 2
n__zip_0(16,16) -> 10
n__zip_0(16,16) -> 20
n__zip_1(1,1) -> 19
n__zip_1(1,5) -> 19
n__zip_1(1,6) -> 19
n__zip_1(1,7) -> 19
n__zip_1(1,8) -> 19
n__zip_1(1,9) -> 19
n__zip_1(1,10) -> 19
n__zip_1(1,11) -> 19
n__zip_1(1,13) -> 19
n__zip_1(1,16) -> 19
n__zip_1(5,1) -> 19
n__zip_1(5,5) -> 19
n__zip_1(5,6) -> 19
n__zip_1(5,7) -> 19
n__zip_1(5,8) -> 19
n__zip_1(5,9) -> 19
n__zip_1(5,10) -> 19
n__zip_1(5,11) -> 19
n__zip_1(5,13) -> 19
n__zip_1(5,16) -> 19
n__zip_1(6,1) -> 19
n__zip_1(6,5) -> 19
n__zip_1(6,6) -> 19
n__zip_1(6,7) -> 19
n__zip_1(6,8) -> 19
n__zip_1(6,9) -> 19
n__zip_1(6,10) -> 19
n__zip_1(6,11) -> 19
n__zip_1(6,13) -> 19
n__zip_1(6,16) -> 19
n__zip_1(7,1) -> 19
n__zip_1(7,5) -> 19
n__zip_1(7,6) -> 19
n__zip_1(7,7) -> 19
n__zip_1(7,8) -> 19
n__zip_1(7,9) -> 19
n__zip_1(7,10) -> 19
n__zip_1(7,11) -> 19
n__zip_1(7,13) -> 19
n__zip_1(7,16) -> 19
n__zip_1(8,1) -> 19
n__zip_1(8,5) -> 19
n__zip_1(8,6) -> 19
n__zip_1(8,7) -> 19
n__zip_1(8,8) -> 19
n__zip_1(8,9) -> 19
n__zip_1(8,10) -> 19
n__zip_1(8,11) -> 19
n__zip_1(8,13) -> 19
n__zip_1(8,16) -> 19
n__zip_1(9,1) -> 19
n__zip_1(9,5) -> 19
n__zip_1(9,6) -> 19
n__zip_1(9,7) -> 19
n__zip_1(9,8) -> 19
n__zip_1(9,9) -> 19
n__zip_1(9,10) -> 19
n__zip_1(9,11) -> 19
n__zip_1(9,13) -> 19
n__zip_1(9,16) -> 19
n__zip_1(10,1) -> 19
n__zip_1(10,5) -> 19
n__zip_1(10,6) -> 19
n__zip_1(10,7) -> 19
n__zip_1(10,8) -> 19
n__zip_1(10,9) -> 19
n__zip_1(10,10) -> 19
n__zip_1(10,11) -> 19
n__zip_1(10,13) -> 19
n__zip_1(10,16) -> 19
n__zip_1(11,1) -> 19
n__zip_1(11,5) -> 19
n__zip_1(11,6) -> 19
n__zip_1(11,7) -> 19
n__zip_1(11,8) -> 19
n__zip_1(11,9) -> 19
n__zip_1(11,10) -> 19
n__zip_1(11,11) -> 19
n__zip_1(11,13) -> 19
n__zip_1(11,16) -> 19
n__zip_1(13,1) -> 19
n__zip_1(13,5) -> 19
n__zip_1(13,6) -> 19
n__zip_1(13,7) -> 19
n__zip_1(13,8) -> 19
n__zip_1(13,9) -> 19
n__zip_1(13,10) -> 19
n__zip_1(13,11) -> 19
n__zip_1(13,13) -> 19
n__zip_1(13,16) -> 19
n__zip_1(16,1) -> 19
n__zip_1(16,5) -> 19
n__zip_1(16,6) -> 19
n__zip_1(16,7) -> 19
n__zip_1(16,8) -> 19
n__zip_1(16,9) -> 19
n__zip_1(16,10) -> 19
n__zip_1(16,11) -> 19
n__zip_1(16,13) -> 19
n__zip_1(16,16) -> 19
n__zip_2(20,20) -> 2
n__zip_2(20,20) -> 20
nil_0() -> 2
nil_0() -> 11
nil_0() -> 20
nil_1() -> 2
nil_1() -> 15
nil_1() -> 18
nil_1() -> 19
nil_1() -> 20
nil_2() -> 2
nil_2() -> 20
oddNs_0() -> 12
oddNs_1() -> 2
oddNs_1() -> 20
pair_0(1,1) -> 2
pair_0(1,1) -> 13
pair_0(1,1) -> 20
pair_0(1,5) -> 2
pair_0(1,5) -> 13
pair_0(1,5) -> 20
pair_0(1,6) -> 2
pair_0(1,6) -> 13
pair_0(1,6) -> 20
pair_0(1,7) -> 2
pair_0(1,7) -> 13
pair_0(1,7) -> 20
pair_0(1,8) -> 2
pair_0(1,8) -> 13
pair_0(1,8) -> 20
pair_0(1,9) -> 2
pair_0(1,9) -> 13
pair_0(1,9) -> 20
pair_0(1,10) -> 2
pair_0(1,10) -> 13
pair_0(1,10) -> 20
pair_0(1,11) -> 2
pair_0(1,11) -> 13
pair_0(1,11) -> 20
pair_0(1,13) -> 2
pair_0(1,13) -> 13
pair_0(1,13) -> 20
pair_0(1,16) -> 2
pair_0(1,16) -> 13
pair_0(1,16) -> 20
pair_0(5,1) -> 2
pair_0(5,1) -> 13
pair_0(5,1) -> 20
pair_0(5,5) -> 2
pair_0(5,5) -> 13
pair_0(5,5) -> 20
pair_0(5,6) -> 2
pair_0(5,6) -> 13
pair_0(5,6) -> 20
pair_0(5,7) -> 2
pair_0(5,7) -> 13
pair_0(5,7) -> 20
pair_0(5,8) -> 2
pair_0(5,8) -> 13
pair_0(5,8) -> 20
pair_0(5,9) -> 2
pair_0(5,9) -> 13
pair_0(5,9) -> 20
pair_0(5,10) -> 2
pair_0(5,10) -> 13
pair_0(5,10) -> 20
pair_0(5,11) -> 2
pair_0(5,11) -> 13
pair_0(5,11) -> 20
pair_0(5,13) -> 2
pair_0(5,13) -> 13
pair_0(5,13) -> 20
pair_0(5,16) -> 2
pair_0(5,16) -> 13
pair_0(5,16) -> 20
pair_0(6,1) -> 2
pair_0(6,1) -> 13
pair_0(6,1) -> 20
pair_0(6,5) -> 2
pair_0(6,5) -> 13
pair_0(6,5) -> 20
pair_0(6,6) -> 2
pair_0(6,6) -> 13
pair_0(6,6) -> 20
pair_0(6,7) -> 2
pair_0(6,7) -> 13
pair_0(6,7) -> 20
pair_0(6,8) -> 2
pair_0(6,8) -> 13
pair_0(6,8) -> 20
pair_0(6,9) -> 2
pair_0(6,9) -> 13
pair_0(6,9) -> 20
pair_0(6,10) -> 2
pair_0(6,10) -> 13
pair_0(6,10) -> 20
pair_0(6,11) -> 2
pair_0(6,11) -> 13
pair_0(6,11) -> 20
pair_0(6,13) -> 2
pair_0(6,13) -> 13
pair_0(6,13) -> 20
pair_0(6,16) -> 2
pair_0(6,16) -> 13
pair_0(6,16) -> 20
pair_0(7,1) -> 2
pair_0(7,1) -> 13
pair_0(7,1) -> 20
pair_0(7,5) -> 2
pair_0(7,5) -> 13
pair_0(7,5) -> 20
pair_0(7,6) -> 2
pair_0(7,6) -> 13
pair_0(7,6) -> 20
pair_0(7,7) -> 2
pair_0(7,7) -> 13
pair_0(7,7) -> 20
pair_0(7,8) -> 2
pair_0(7,8) -> 13
pair_0(7,8) -> 20
pair_0(7,9) -> 2
pair_0(7,9) -> 13
pair_0(7,9) -> 20
pair_0(7,10) -> 2
pair_0(7,10) -> 13
pair_0(7,10) -> 20
pair_0(7,11) -> 2
pair_0(7,11) -> 13
pair_0(7,11) -> 20
pair_0(7,13) -> 2
pair_0(7,13) -> 13
pair_0(7,13) -> 20
pair_0(7,16) -> 2
pair_0(7,16) -> 13
pair_0(7,16) -> 20
pair_0(8,1) -> 2
pair_0(8,1) -> 13
pair_0(8,1) -> 20
pair_0(8,5) -> 2
pair_0(8,5) -> 13
pair_0(8,5) -> 20
pair_0(8,6) -> 2
pair_0(8,6) -> 13
pair_0(8,6) -> 20
pair_0(8,7) -> 2
pair_0(8,7) -> 13
pair_0(8,7) -> 20
pair_0(8,8) -> 2
pair_0(8,8) -> 13
pair_0(8,8) -> 20
pair_0(8,9) -> 2
pair_0(8,9) -> 13
pair_0(8,9) -> 20
pair_0(8,10) -> 2
pair_0(8,10) -> 13
pair_0(8,10) -> 20
pair_0(8,11) -> 2
pair_0(8,11) -> 13
pair_0(8,11) -> 20
pair_0(8,13) -> 2
pair_0(8,13) -> 13
pair_0(8,13) -> 20
pair_0(8,16) -> 2
pair_0(8,16) -> 13
pair_0(8,16) -> 20
pair_0(9,1) -> 2
pair_0(9,1) -> 13
pair_0(9,1) -> 20
pair_0(9,5) -> 2
pair_0(9,5) -> 13
pair_0(9,5) -> 20
pair_0(9,6) -> 2
pair_0(9,6) -> 13
pair_0(9,6) -> 20
pair_0(9,7) -> 2
pair_0(9,7) -> 13
pair_0(9,7) -> 20
pair_0(9,8) -> 2
pair_0(9,8) -> 13
pair_0(9,8) -> 20
pair_0(9,9) -> 2
pair_0(9,9) -> 13
pair_0(9,9) -> 20
pair_0(9,10) -> 2
pair_0(9,10) -> 13
pair_0(9,10) -> 20
pair_0(9,11) -> 2
pair_0(9,11) -> 13
pair_0(9,11) -> 20
pair_0(9,13) -> 2
pair_0(9,13) -> 13
pair_0(9,13) -> 20
pair_0(9,16) -> 2
pair_0(9,16) -> 13
pair_0(9,16) -> 20
pair_0(10,1) -> 2
pair_0(10,1) -> 13
pair_0(10,1) -> 20
pair_0(10,5) -> 2
pair_0(10,5) -> 13
pair_0(10,5) -> 20
pair_0(10,6) -> 2
pair_0(10,6) -> 13
pair_0(10,6) -> 20
pair_0(10,7) -> 2
pair_0(10,7) -> 13
pair_0(10,7) -> 20
pair_0(10,8) -> 2
pair_0(10,8) -> 13
pair_0(10,8) -> 20
pair_0(10,9) -> 2
pair_0(10,9) -> 13
pair_0(10,9) -> 20
pair_0(10,10) -> 2
pair_0(10,10) -> 13
pair_0(10,10) -> 20
pair_0(10,11) -> 2
pair_0(10,11) -> 13
pair_0(10,11) -> 20
pair_0(10,13) -> 2
pair_0(10,13) -> 13
pair_0(10,13) -> 20
pair_0(10,16) -> 2
pair_0(10,16) -> 13
pair_0(10,16) -> 20
pair_0(11,1) -> 2
pair_0(11,1) -> 13
pair_0(11,1) -> 20
pair_0(11,5) -> 2
pair_0(11,5) -> 13
pair_0(11,5) -> 20
pair_0(11,6) -> 2
pair_0(11,6) -> 13
pair_0(11,6) -> 20
pair_0(11,7) -> 2
pair_0(11,7) -> 13
pair_0(11,7) -> 20
pair_0(11,8) -> 2
pair_0(11,8) -> 13
pair_0(11,8) -> 20
pair_0(11,9) -> 2
pair_0(11,9) -> 13
pair_0(11,9) -> 20
pair_0(11,10) -> 2
pair_0(11,10) -> 13
pair_0(11,10) -> 20
pair_0(11,11) -> 2
pair_0(11,11) -> 13
pair_0(11,11) -> 20
pair_0(11,13) -> 2
pair_0(11,13) -> 13
pair_0(11,13) -> 20
pair_0(11,16) -> 2
pair_0(11,16) -> 13
pair_0(11,16) -> 20
pair_0(13,1) -> 2
pair_0(13,1) -> 13
pair_0(13,1) -> 20
pair_0(13,5) -> 2
pair_0(13,5) -> 13
pair_0(13,5) -> 20
pair_0(13,6) -> 2
pair_0(13,6) -> 13
pair_0(13,6) -> 20
pair_0(13,7) -> 2
pair_0(13,7) -> 13
pair_0(13,7) -> 20
pair_0(13,8) -> 2
pair_0(13,8) -> 13
pair_0(13,8) -> 20
pair_0(13,9) -> 2
pair_0(13,9) -> 13
pair_0(13,9) -> 20
pair_0(13,10) -> 2
pair_0(13,10) -> 13
pair_0(13,10) -> 20
pair_0(13,11) -> 2
pair_0(13,11) -> 13
pair_0(13,11) -> 20
pair_0(13,13) -> 2
pair_0(13,13) -> 13
pair_0(13,13) -> 20
pair_0(13,16) -> 2
pair_0(13,16) -> 13
pair_0(13,16) -> 20
pair_0(16,1) -> 2
pair_0(16,1) -> 13
pair_0(16,1) -> 20
pair_0(16,5) -> 2
pair_0(16,5) -> 13
pair_0(16,5) -> 20
pair_0(16,6) -> 2
pair_0(16,6) -> 13
pair_0(16,6) -> 20
pair_0(16,7) -> 2
pair_0(16,7) -> 13
pair_0(16,7) -> 20
pair_0(16,8) -> 2
pair_0(16,8) -> 13
pair_0(16,8) -> 20
pair_0(16,9) -> 2
pair_0(16,9) -> 13
pair_0(16,9) -> 20
pair_0(16,10) -> 2
pair_0(16,10) -> 13
pair_0(16,10) -> 20
pair_0(16,11) -> 2
pair_0(16,11) -> 13
pair_0(16,11) -> 20
pair_0(16,13) -> 2
pair_0(16,13) -> 13
pair_0(16,13) -> 20
pair_0(16,16) -> 2
pair_0(16,16) -> 13
pair_0(16,16) -> 20
pairNs_0() -> 14
pairNs_1() -> 21
pairNs_2() -> 22
repItems_0(1) -> 15
repItems_0(5) -> 15
repItems_0(6) -> 15
repItems_0(7) -> 15
repItems_0(8) -> 15
repItems_0(9) -> 15
repItems_0(10) -> 15
repItems_0(11) -> 15
repItems_0(13) -> 15
repItems_0(16) -> 15
repItems_1(20) -> 2
repItems_1(20) -> 20
s_0(1) -> 2
s_0(1) -> 16
s_0(1) -> 20
s_0(5) -> 2
s_0(5) -> 16
s_0(5) -> 20
s_0(6) -> 2
s_0(6) -> 16
s_0(6) -> 20
s_0(7) -> 2
s_0(7) -> 16
s_0(7) -> 20
s_0(8) -> 2
s_0(8) -> 16
s_0(8) -> 20
s_0(9) -> 2
s_0(9) -> 16
s_0(9) -> 20
s_0(10) -> 2
s_0(10) -> 16
s_0(10) -> 20
s_0(11) -> 2
s_0(11) -> 16
s_0(11) -> 20
s_0(13) -> 2
s_0(13) -> 16
s_0(13) -> 20
s_0(16) -> 2
s_0(16) -> 16
s_0(16) -> 20
tail_0(1) -> 17
tail_0(5) -> 17
tail_0(6) -> 17
tail_0(7) -> 17
tail_0(8) -> 17
tail_0(9) -> 17
tail_0(10) -> 17
tail_0(11) -> 17
tail_0(13) -> 17
tail_0(16) -> 17
take_0(1,1) -> 18
take_0(1,5) -> 18
take_0(1,6) -> 18
take_0(1,7) -> 18
take_0(1,8) -> 18
take_0(1,9) -> 18
take_0(1,10) -> 18
take_0(1,11) -> 18
take_0(1,13) -> 18
take_0(1,16) -> 18
take_0(5,1) -> 18
take_0(5,5) -> 18
take_0(5,6) -> 18
take_0(5,7) -> 18
take_0(5,8) -> 18
take_0(5,9) -> 18
take_0(5,10) -> 18
take_0(5,11) -> 18
take_0(5,13) -> 18
take_0(5,16) -> 18
take_0(6,1) -> 18
take_0(6,5) -> 18
take_0(6,6) -> 18
take_0(6,7) -> 18
take_0(6,8) -> 18
take_0(6,9) -> 18
take_0(6,10) -> 18
take_0(6,11) -> 18
take_0(6,13) -> 18
take_0(6,16) -> 18
take_0(7,1) -> 18
take_0(7,5) -> 18
take_0(7,6) -> 18
take_0(7,7) -> 18
take_0(7,8) -> 18
take_0(7,9) -> 18
take_0(7,10) -> 18
take_0(7,11) -> 18
take_0(7,13) -> 18
take_0(7,16) -> 18
take_0(8,1) -> 18
take_0(8,5) -> 18
take_0(8,6) -> 18
take_0(8,7) -> 18
take_0(8,8) -> 18
take_0(8,9) -> 18
take_0(8,10) -> 18
take_0(8,11) -> 18
take_0(8,13) -> 18
take_0(8,16) -> 18
take_0(9,1) -> 18
take_0(9,5) -> 18
take_0(9,6) -> 18
take_0(9,7) -> 18
take_0(9,8) -> 18
take_0(9,9) -> 18
take_0(9,10) -> 18
take_0(9,11) -> 18
take_0(9,13) -> 18
take_0(9,16) -> 18
take_0(10,1) -> 18
take_0(10,5) -> 18
take_0(10,6) -> 18
take_0(10,7) -> 18
take_0(10,8) -> 18
take_0(10,9) -> 18
take_0(10,10) -> 18
take_0(10,11) -> 18
take_0(10,13) -> 18
take_0(10,16) -> 18
take_0(11,1) -> 18
take_0(11,5) -> 18
take_0(11,6) -> 18
take_0(11,7) -> 18
take_0(11,8) -> 18
take_0(11,9) -> 18
take_0(11,10) -> 18
take_0(11,11) -> 18
take_0(11,13) -> 18
take_0(11,16) -> 18
take_0(13,1) -> 18
take_0(13,5) -> 18
take_0(13,6) -> 18
take_0(13,7) -> 18
take_0(13,8) -> 18
take_0(13,9) -> 18
take_0(13,10) -> 18
take_0(13,11) -> 18
take_0(13,13) -> 18
take_0(13,16) -> 18
take_0(16,1) -> 18
take_0(16,5) -> 18
take_0(16,6) -> 18
take_0(16,7) -> 18
take_0(16,8) -> 18
take_0(16,9) -> 18
take_0(16,10) -> 18
take_0(16,11) -> 18
take_0(16,13) -> 18
take_0(16,16) -> 18
take_1(20,20) -> 2
take_1(20,20) -> 20
zip_0(1,1) -> 19
zip_0(1,5) -> 19
zip_0(1,6) -> 19
zip_0(1,7) -> 19
zip_0(1,8) -> 19
zip_0(1,9) -> 19
zip_0(1,10) -> 19
zip_0(1,11) -> 19
zip_0(1,13) -> 19
zip_0(1,16) -> 19
zip_0(5,1) -> 19
zip_0(5,5) -> 19
zip_0(5,6) -> 19
zip_0(5,7) -> 19
zip_0(5,8) -> 19
zip_0(5,9) -> 19
zip_0(5,10) -> 19
zip_0(5,11) -> 19
zip_0(5,13) -> 19
zip_0(5,16) -> 19
zip_0(6,1) -> 19
zip_0(6,5) -> 19
zip_0(6,6) -> 19
zip_0(6,7) -> 19
zip_0(6,8) -> 19
zip_0(6,9) -> 19
zip_0(6,10) -> 19
zip_0(6,11) -> 19
zip_0(6,13) -> 19
zip_0(6,16) -> 19
zip_0(7,1) -> 19
zip_0(7,5) -> 19
zip_0(7,6) -> 19
zip_0(7,7) -> 19
zip_0(7,8) -> 19
zip_0(7,9) -> 19
zip_0(7,10) -> 19
zip_0(7,11) -> 19
zip_0(7,13) -> 19
zip_0(7,16) -> 19
zip_0(8,1) -> 19
zip_0(8,5) -> 19
zip_0(8,6) -> 19
zip_0(8,7) -> 19
zip_0(8,8) -> 19
zip_0(8,9) -> 19
zip_0(8,10) -> 19
zip_0(8,11) -> 19
zip_0(8,13) -> 19
zip_0(8,16) -> 19
zip_0(9,1) -> 19
zip_0(9,5) -> 19
zip_0(9,6) -> 19
zip_0(9,7) -> 19
zip_0(9,8) -> 19
zip_0(9,9) -> 19
zip_0(9,10) -> 19
zip_0(9,11) -> 19
zip_0(9,13) -> 19
zip_0(9,16) -> 19
zip_0(10,1) -> 19
zip_0(10,5) -> 19
zip_0(10,6) -> 19
zip_0(10,7) -> 19
zip_0(10,8) -> 19
zip_0(10,9) -> 19
zip_0(10,10) -> 19
zip_0(10,11) -> 19
zip_0(10,13) -> 19
zip_0(10,16) -> 19
zip_0(11,1) -> 19
zip_0(11,5) -> 19
zip_0(11,6) -> 19
zip_0(11,7) -> 19
zip_0(11,8) -> 19
zip_0(11,9) -> 19
zip_0(11,10) -> 19
zip_0(11,11) -> 19
zip_0(11,13) -> 19
zip_0(11,16) -> 19
zip_0(13,1) -> 19
zip_0(13,5) -> 19
zip_0(13,6) -> 19
zip_0(13,7) -> 19
zip_0(13,8) -> 19
zip_0(13,9) -> 19
zip_0(13,10) -> 19
zip_0(13,11) -> 19
zip_0(13,13) -> 19
zip_0(13,16) -> 19
zip_0(16,1) -> 19
zip_0(16,5) -> 19
zip_0(16,6) -> 19
zip_0(16,7) -> 19
zip_0(16,8) -> 19
zip_0(16,9) -> 19
zip_0(16,10) -> 19
zip_0(16,11) -> 19
zip_0(16,13) -> 19
zip_0(16,16) -> 19
zip_1(20,20) -> 2
zip_1(20,20) -> 20
1 -> 2
1 -> 20
5 -> 2
5 -> 20
6 -> 2
6 -> 20
7 -> 2
7 -> 20
8 -> 2
8 -> 20
9 -> 2
9 -> 20
10 -> 2
10 -> 20
11 -> 2
11 -> 20
13 -> 2
13 -> 20
16 -> 2
16 -> 20
** Step 1.b:3: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
activate(X) -> X
activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
activate(n__incr(X)) -> incr(activate(X))
activate(n__oddNs()) -> oddNs()
activate(n__repItems(X)) -> repItems(activate(X))
activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
activate(n__zip(X1,X2)) -> zip(activate(X1),activate(X2))
cons(X1,X2) -> n__cons(X1,X2)
incr(X) -> n__incr(X)
oddNs() -> incr(pairNs())
oddNs() -> n__oddNs()
pairNs() -> cons(0(),n__incr(n__oddNs()))
repItems(X) -> n__repItems(X)
repItems(nil()) -> nil()
take(X1,X2) -> n__take(X1,X2)
take(0(),XS) -> nil()
zip(X,nil()) -> nil()
zip(X1,X2) -> n__zip(X1,X2)
zip(nil(),XS) -> nil()
- Signature:
{activate/1,cons/2,incr/1,oddNs/0,pairNs/0,repItems/1,tail/1,take/2,zip/2} / {0/0,n__cons/2,n__incr/1
,n__oddNs/0,n__repItems/1,n__take/2,n__zip/2,nil/0,pair/2,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,cons,incr,oddNs,pairNs,repItems,tail,take
,zip} and constructors {0,n__cons,n__incr,n__oddNs,n__repItems,n__take,n__zip,nil,pair,s}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
WORST_CASE(Omega(n^1),O(n^1))