* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__incr(X)) -> incr(activate(X)) activate(n__oddNs()) -> oddNs() activate(n__repItems(X)) -> repItems(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zip(X1,X2)) -> zip(activate(X1),activate(X2)) cons(X1,X2) -> n__cons(X1,X2) incr(X) -> n__incr(X) incr(cons(X,XS)) -> cons(s(X),n__incr(activate(XS))) oddNs() -> incr(pairNs()) oddNs() -> n__oddNs() pairNs() -> cons(0(),n__incr(n__oddNs())) repItems(X) -> n__repItems(X) repItems(cons(X,XS)) -> cons(X,n__cons(X,n__repItems(activate(XS)))) repItems(nil()) -> nil() tail(cons(X,XS)) -> activate(XS) take(X1,X2) -> n__take(X1,X2) take(0(),XS) -> nil() take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) zip(X,nil()) -> nil() zip(X1,X2) -> n__zip(X1,X2) zip(cons(X,XS),cons(Y,YS)) -> cons(pair(X,Y),n__zip(activate(XS),activate(YS))) zip(nil(),XS) -> nil() - Signature: {activate/1,cons/2,incr/1,oddNs/0,pairNs/0,repItems/1,tail/1,take/2,zip/2} / {0/0,n__cons/2,n__incr/1 ,n__oddNs/0,n__repItems/1,n__take/2,n__zip/2,nil/0,pair/2,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,cons,incr,oddNs,pairNs,repItems,tail,take ,zip} and constructors {0,n__cons,n__incr,n__oddNs,n__repItems,n__take,n__zip,nil,pair,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__incr(X)) -> incr(activate(X)) activate(n__oddNs()) -> oddNs() activate(n__repItems(X)) -> repItems(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zip(X1,X2)) -> zip(activate(X1),activate(X2)) cons(X1,X2) -> n__cons(X1,X2) incr(X) -> n__incr(X) incr(cons(X,XS)) -> cons(s(X),n__incr(activate(XS))) oddNs() -> incr(pairNs()) oddNs() -> n__oddNs() pairNs() -> cons(0(),n__incr(n__oddNs())) repItems(X) -> n__repItems(X) repItems(cons(X,XS)) -> cons(X,n__cons(X,n__repItems(activate(XS)))) repItems(nil()) -> nil() tail(cons(X,XS)) -> activate(XS) take(X1,X2) -> n__take(X1,X2) take(0(),XS) -> nil() take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) zip(X,nil()) -> nil() zip(X1,X2) -> n__zip(X1,X2) zip(cons(X,XS),cons(Y,YS)) -> cons(pair(X,Y),n__zip(activate(XS),activate(YS))) zip(nil(),XS) -> nil() - Signature: {activate/1,cons/2,incr/1,oddNs/0,pairNs/0,repItems/1,tail/1,take/2,zip/2} / {0/0,n__cons/2,n__incr/1 ,n__oddNs/0,n__repItems/1,n__take/2,n__zip/2,nil/0,pair/2,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,cons,incr,oddNs,pairNs,repItems,tail,take ,zip} and constructors {0,n__cons,n__incr,n__oddNs,n__repItems,n__take,n__zip,nil,pair,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: activate(x){x -> n__cons(x,y)} = activate(n__cons(x,y)) ->^+ cons(activate(x),y) = C[activate(x) = activate(x){}] ** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__incr(X)) -> incr(activate(X)) activate(n__oddNs()) -> oddNs() activate(n__repItems(X)) -> repItems(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zip(X1,X2)) -> zip(activate(X1),activate(X2)) cons(X1,X2) -> n__cons(X1,X2) incr(X) -> n__incr(X) incr(cons(X,XS)) -> cons(s(X),n__incr(activate(XS))) oddNs() -> incr(pairNs()) oddNs() -> n__oddNs() pairNs() -> cons(0(),n__incr(n__oddNs())) repItems(X) -> n__repItems(X) repItems(cons(X,XS)) -> cons(X,n__cons(X,n__repItems(activate(XS)))) repItems(nil()) -> nil() tail(cons(X,XS)) -> activate(XS) take(X1,X2) -> n__take(X1,X2) take(0(),XS) -> nil() take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) zip(X,nil()) -> nil() zip(X1,X2) -> n__zip(X1,X2) zip(cons(X,XS),cons(Y,YS)) -> cons(pair(X,Y),n__zip(activate(XS),activate(YS))) zip(nil(),XS) -> nil() - Signature: {activate/1,cons/2,incr/1,oddNs/0,pairNs/0,repItems/1,tail/1,take/2,zip/2} / {0/0,n__cons/2,n__incr/1 ,n__oddNs/0,n__repItems/1,n__take/2,n__zip/2,nil/0,pair/2,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,cons,incr,oddNs,pairNs,repItems,tail,take ,zip} and constructors {0,n__cons,n__incr,n__oddNs,n__repItems,n__take,n__zip,nil,pair,s} + Applied Processor: InnermostRuleRemoval + Details: Arguments of following rules are not normal-forms. incr(cons(X,XS)) -> cons(s(X),n__incr(activate(XS))) repItems(cons(X,XS)) -> cons(X,n__cons(X,n__repItems(activate(XS)))) tail(cons(X,XS)) -> activate(XS) take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) zip(cons(X,XS),cons(Y,YS)) -> cons(pair(X,Y),n__zip(activate(XS),activate(YS))) All above mentioned rules can be savely removed. ** Step 1.b:2: Bounds WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__incr(X)) -> incr(activate(X)) activate(n__oddNs()) -> oddNs() activate(n__repItems(X)) -> repItems(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zip(X1,X2)) -> zip(activate(X1),activate(X2)) cons(X1,X2) -> n__cons(X1,X2) incr(X) -> n__incr(X) oddNs() -> incr(pairNs()) oddNs() -> n__oddNs() pairNs() -> cons(0(),n__incr(n__oddNs())) repItems(X) -> n__repItems(X) repItems(nil()) -> nil() take(X1,X2) -> n__take(X1,X2) take(0(),XS) -> nil() zip(X,nil()) -> nil() zip(X1,X2) -> n__zip(X1,X2) zip(nil(),XS) -> nil() - Signature: {activate/1,cons/2,incr/1,oddNs/0,pairNs/0,repItems/1,tail/1,take/2,zip/2} / {0/0,n__cons/2,n__incr/1 ,n__oddNs/0,n__repItems/1,n__take/2,n__zip/2,nil/0,pair/2,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,cons,incr,oddNs,pairNs,repItems,tail,take ,zip} and constructors {0,n__cons,n__incr,n__oddNs,n__repItems,n__take,n__zip,nil,pair,s} + Applied Processor: Bounds {initialAutomaton = perSymbol, enrichment = match} + Details: The problem is match-bounded by 4. The enriched problem is compatible with follwoing automaton. 0_0() -> 1 0_0() -> 2 0_0() -> 20 0_1() -> 23 0_2() -> 25 0_3() -> 26 activate_0(1) -> 2 activate_0(5) -> 2 activate_0(6) -> 2 activate_0(7) -> 2 activate_0(8) -> 2 activate_0(9) -> 2 activate_0(10) -> 2 activate_0(11) -> 2 activate_0(13) -> 2 activate_0(16) -> 2 activate_1(1) -> 20 activate_1(5) -> 20 activate_1(6) -> 20 activate_1(7) -> 20 activate_1(8) -> 20 activate_1(9) -> 20 activate_1(10) -> 20 activate_1(11) -> 20 activate_1(13) -> 20 activate_1(16) -> 20 cons_0(1,1) -> 3 cons_0(1,5) -> 3 cons_0(1,6) -> 3 cons_0(1,7) -> 3 cons_0(1,8) -> 3 cons_0(1,9) -> 3 cons_0(1,10) -> 3 cons_0(1,11) -> 3 cons_0(1,13) -> 3 cons_0(1,16) -> 3 cons_0(5,1) -> 3 cons_0(5,5) -> 3 cons_0(5,6) -> 3 cons_0(5,7) -> 3 cons_0(5,8) -> 3 cons_0(5,9) -> 3 cons_0(5,10) -> 3 cons_0(5,11) -> 3 cons_0(5,13) -> 3 cons_0(5,16) -> 3 cons_0(6,1) -> 3 cons_0(6,5) -> 3 cons_0(6,6) -> 3 cons_0(6,7) -> 3 cons_0(6,8) -> 3 cons_0(6,9) -> 3 cons_0(6,10) -> 3 cons_0(6,11) -> 3 cons_0(6,13) -> 3 cons_0(6,16) -> 3 cons_0(7,1) -> 3 cons_0(7,5) -> 3 cons_0(7,6) -> 3 cons_0(7,7) -> 3 cons_0(7,8) -> 3 cons_0(7,9) -> 3 cons_0(7,10) -> 3 cons_0(7,11) -> 3 cons_0(7,13) -> 3 cons_0(7,16) -> 3 cons_0(8,1) -> 3 cons_0(8,5) -> 3 cons_0(8,6) -> 3 cons_0(8,7) -> 3 cons_0(8,8) -> 3 cons_0(8,9) -> 3 cons_0(8,10) -> 3 cons_0(8,11) -> 3 cons_0(8,13) -> 3 cons_0(8,16) -> 3 cons_0(9,1) -> 3 cons_0(9,5) -> 3 cons_0(9,6) -> 3 cons_0(9,7) -> 3 cons_0(9,8) -> 3 cons_0(9,9) -> 3 cons_0(9,10) -> 3 cons_0(9,11) -> 3 cons_0(9,13) -> 3 cons_0(9,16) -> 3 cons_0(10,1) -> 3 cons_0(10,5) -> 3 cons_0(10,6) -> 3 cons_0(10,7) -> 3 cons_0(10,8) -> 3 cons_0(10,9) -> 3 cons_0(10,10) -> 3 cons_0(10,11) -> 3 cons_0(10,13) -> 3 cons_0(10,16) -> 3 cons_0(11,1) -> 3 cons_0(11,5) -> 3 cons_0(11,6) -> 3 cons_0(11,7) -> 3 cons_0(11,8) -> 3 cons_0(11,9) -> 3 cons_0(11,10) -> 3 cons_0(11,11) -> 3 cons_0(11,13) -> 3 cons_0(11,16) -> 3 cons_0(13,1) -> 3 cons_0(13,5) -> 3 cons_0(13,6) -> 3 cons_0(13,7) -> 3 cons_0(13,8) -> 3 cons_0(13,9) -> 3 cons_0(13,10) -> 3 cons_0(13,11) -> 3 cons_0(13,13) -> 3 cons_0(13,16) -> 3 cons_0(16,1) -> 3 cons_0(16,5) -> 3 cons_0(16,6) -> 3 cons_0(16,7) -> 3 cons_0(16,8) -> 3 cons_0(16,9) -> 3 cons_0(16,10) -> 3 cons_0(16,11) -> 3 cons_0(16,13) -> 3 cons_0(16,16) -> 3 cons_1(20,1) -> 2 cons_1(20,1) -> 20 cons_1(20,5) -> 2 cons_1(20,5) -> 20 cons_1(20,6) -> 2 cons_1(20,6) -> 20 cons_1(20,7) -> 2 cons_1(20,7) -> 20 cons_1(20,8) -> 2 cons_1(20,8) -> 20 cons_1(20,9) -> 2 cons_1(20,9) -> 20 cons_1(20,10) -> 2 cons_1(20,10) -> 20 cons_1(20,11) -> 2 cons_1(20,11) -> 20 cons_1(20,13) -> 2 cons_1(20,13) -> 20 cons_1(20,16) -> 2 cons_1(20,16) -> 20 cons_1(23,24) -> 14 cons_2(25,20) -> 21 cons_3(26,27) -> 22 incr_0(1) -> 4 incr_0(5) -> 4 incr_0(6) -> 4 incr_0(7) -> 4 incr_0(8) -> 4 incr_0(9) -> 4 incr_0(10) -> 4 incr_0(11) -> 4 incr_0(13) -> 4 incr_0(16) -> 4 incr_1(20) -> 2 incr_1(20) -> 20 incr_1(21) -> 12 incr_2(22) -> 2 incr_2(22) -> 20 n__cons_0(1,1) -> 2 n__cons_0(1,1) -> 5 n__cons_0(1,1) -> 20 n__cons_0(1,5) -> 2 n__cons_0(1,5) -> 5 n__cons_0(1,5) -> 20 n__cons_0(1,6) -> 2 n__cons_0(1,6) -> 5 n__cons_0(1,6) -> 20 n__cons_0(1,7) -> 2 n__cons_0(1,7) -> 5 n__cons_0(1,7) -> 20 n__cons_0(1,8) -> 2 n__cons_0(1,8) -> 5 n__cons_0(1,8) -> 20 n__cons_0(1,9) -> 2 n__cons_0(1,9) -> 5 n__cons_0(1,9) -> 20 n__cons_0(1,10) -> 2 n__cons_0(1,10) -> 5 n__cons_0(1,10) -> 20 n__cons_0(1,11) -> 2 n__cons_0(1,11) -> 5 n__cons_0(1,11) -> 20 n__cons_0(1,13) -> 2 n__cons_0(1,13) -> 5 n__cons_0(1,13) -> 20 n__cons_0(1,16) -> 2 n__cons_0(1,16) -> 5 n__cons_0(1,16) -> 20 n__cons_0(5,1) -> 2 n__cons_0(5,1) -> 5 n__cons_0(5,1) -> 20 n__cons_0(5,5) -> 2 n__cons_0(5,5) -> 5 n__cons_0(5,5) -> 20 n__cons_0(5,6) -> 2 n__cons_0(5,6) -> 5 n__cons_0(5,6) -> 20 n__cons_0(5,7) -> 2 n__cons_0(5,7) -> 5 n__cons_0(5,7) -> 20 n__cons_0(5,8) -> 2 n__cons_0(5,8) -> 5 n__cons_0(5,8) -> 20 n__cons_0(5,9) -> 2 n__cons_0(5,9) -> 5 n__cons_0(5,9) -> 20 n__cons_0(5,10) -> 2 n__cons_0(5,10) -> 5 n__cons_0(5,10) -> 20 n__cons_0(5,11) -> 2 n__cons_0(5,11) -> 5 n__cons_0(5,11) -> 20 n__cons_0(5,13) -> 2 n__cons_0(5,13) -> 5 n__cons_0(5,13) -> 20 n__cons_0(5,16) -> 2 n__cons_0(5,16) -> 5 n__cons_0(5,16) -> 20 n__cons_0(6,1) -> 2 n__cons_0(6,1) -> 5 n__cons_0(6,1) -> 20 n__cons_0(6,5) -> 2 n__cons_0(6,5) -> 5 n__cons_0(6,5) -> 20 n__cons_0(6,6) -> 2 n__cons_0(6,6) -> 5 n__cons_0(6,6) -> 20 n__cons_0(6,7) -> 2 n__cons_0(6,7) -> 5 n__cons_0(6,7) -> 20 n__cons_0(6,8) -> 2 n__cons_0(6,8) -> 5 n__cons_0(6,8) -> 20 n__cons_0(6,9) -> 2 n__cons_0(6,9) -> 5 n__cons_0(6,9) -> 20 n__cons_0(6,10) -> 2 n__cons_0(6,10) -> 5 n__cons_0(6,10) -> 20 n__cons_0(6,11) -> 2 n__cons_0(6,11) -> 5 n__cons_0(6,11) -> 20 n__cons_0(6,13) -> 2 n__cons_0(6,13) -> 5 n__cons_0(6,13) -> 20 n__cons_0(6,16) -> 2 n__cons_0(6,16) -> 5 n__cons_0(6,16) -> 20 n__cons_0(7,1) -> 2 n__cons_0(7,1) -> 5 n__cons_0(7,1) -> 20 n__cons_0(7,5) -> 2 n__cons_0(7,5) -> 5 n__cons_0(7,5) -> 20 n__cons_0(7,6) -> 2 n__cons_0(7,6) -> 5 n__cons_0(7,6) -> 20 n__cons_0(7,7) -> 2 n__cons_0(7,7) -> 5 n__cons_0(7,7) -> 20 n__cons_0(7,8) -> 2 n__cons_0(7,8) -> 5 n__cons_0(7,8) -> 20 n__cons_0(7,9) -> 2 n__cons_0(7,9) -> 5 n__cons_0(7,9) -> 20 n__cons_0(7,10) -> 2 n__cons_0(7,10) -> 5 n__cons_0(7,10) -> 20 n__cons_0(7,11) -> 2 n__cons_0(7,11) -> 5 n__cons_0(7,11) -> 20 n__cons_0(7,13) -> 2 n__cons_0(7,13) -> 5 n__cons_0(7,13) -> 20 n__cons_0(7,16) -> 2 n__cons_0(7,16) -> 5 n__cons_0(7,16) -> 20 n__cons_0(8,1) -> 2 n__cons_0(8,1) -> 5 n__cons_0(8,1) -> 20 n__cons_0(8,5) -> 2 n__cons_0(8,5) -> 5 n__cons_0(8,5) -> 20 n__cons_0(8,6) -> 2 n__cons_0(8,6) -> 5 n__cons_0(8,6) -> 20 n__cons_0(8,7) -> 2 n__cons_0(8,7) -> 5 n__cons_0(8,7) -> 20 n__cons_0(8,8) -> 2 n__cons_0(8,8) -> 5 n__cons_0(8,8) -> 20 n__cons_0(8,9) -> 2 n__cons_0(8,9) -> 5 n__cons_0(8,9) -> 20 n__cons_0(8,10) -> 2 n__cons_0(8,10) -> 5 n__cons_0(8,10) -> 20 n__cons_0(8,11) -> 2 n__cons_0(8,11) -> 5 n__cons_0(8,11) -> 20 n__cons_0(8,13) -> 2 n__cons_0(8,13) -> 5 n__cons_0(8,13) -> 20 n__cons_0(8,16) -> 2 n__cons_0(8,16) -> 5 n__cons_0(8,16) -> 20 n__cons_0(9,1) -> 2 n__cons_0(9,1) -> 5 n__cons_0(9,1) -> 20 n__cons_0(9,5) -> 2 n__cons_0(9,5) -> 5 n__cons_0(9,5) -> 20 n__cons_0(9,6) -> 2 n__cons_0(9,6) -> 5 n__cons_0(9,6) -> 20 n__cons_0(9,7) -> 2 n__cons_0(9,7) -> 5 n__cons_0(9,7) -> 20 n__cons_0(9,8) -> 2 n__cons_0(9,8) -> 5 n__cons_0(9,8) -> 20 n__cons_0(9,9) -> 2 n__cons_0(9,9) -> 5 n__cons_0(9,9) -> 20 n__cons_0(9,10) -> 2 n__cons_0(9,10) -> 5 n__cons_0(9,10) -> 20 n__cons_0(9,11) -> 2 n__cons_0(9,11) -> 5 n__cons_0(9,11) -> 20 n__cons_0(9,13) -> 2 n__cons_0(9,13) -> 5 n__cons_0(9,13) -> 20 n__cons_0(9,16) -> 2 n__cons_0(9,16) -> 5 n__cons_0(9,16) -> 20 n__cons_0(10,1) -> 2 n__cons_0(10,1) -> 5 n__cons_0(10,1) -> 20 n__cons_0(10,5) -> 2 n__cons_0(10,5) -> 5 n__cons_0(10,5) -> 20 n__cons_0(10,6) -> 2 n__cons_0(10,6) -> 5 n__cons_0(10,6) -> 20 n__cons_0(10,7) -> 2 n__cons_0(10,7) -> 5 n__cons_0(10,7) -> 20 n__cons_0(10,8) -> 2 n__cons_0(10,8) -> 5 n__cons_0(10,8) -> 20 n__cons_0(10,9) -> 2 n__cons_0(10,9) -> 5 n__cons_0(10,9) -> 20 n__cons_0(10,10) -> 2 n__cons_0(10,10) -> 5 n__cons_0(10,10) -> 20 n__cons_0(10,11) -> 2 n__cons_0(10,11) -> 5 n__cons_0(10,11) -> 20 n__cons_0(10,13) -> 2 n__cons_0(10,13) -> 5 n__cons_0(10,13) -> 20 n__cons_0(10,16) -> 2 n__cons_0(10,16) -> 5 n__cons_0(10,16) -> 20 n__cons_0(11,1) -> 2 n__cons_0(11,1) -> 5 n__cons_0(11,1) -> 20 n__cons_0(11,5) -> 2 n__cons_0(11,5) -> 5 n__cons_0(11,5) -> 20 n__cons_0(11,6) -> 2 n__cons_0(11,6) -> 5 n__cons_0(11,6) -> 20 n__cons_0(11,7) -> 2 n__cons_0(11,7) -> 5 n__cons_0(11,7) -> 20 n__cons_0(11,8) -> 2 n__cons_0(11,8) -> 5 n__cons_0(11,8) -> 20 n__cons_0(11,9) -> 2 n__cons_0(11,9) -> 5 n__cons_0(11,9) -> 20 n__cons_0(11,10) -> 2 n__cons_0(11,10) -> 5 n__cons_0(11,10) -> 20 n__cons_0(11,11) -> 2 n__cons_0(11,11) -> 5 n__cons_0(11,11) -> 20 n__cons_0(11,13) -> 2 n__cons_0(11,13) -> 5 n__cons_0(11,13) -> 20 n__cons_0(11,16) -> 2 n__cons_0(11,16) -> 5 n__cons_0(11,16) -> 20 n__cons_0(13,1) -> 2 n__cons_0(13,1) -> 5 n__cons_0(13,1) -> 20 n__cons_0(13,5) -> 2 n__cons_0(13,5) -> 5 n__cons_0(13,5) -> 20 n__cons_0(13,6) -> 2 n__cons_0(13,6) -> 5 n__cons_0(13,6) -> 20 n__cons_0(13,7) -> 2 n__cons_0(13,7) -> 5 n__cons_0(13,7) -> 20 n__cons_0(13,8) -> 2 n__cons_0(13,8) -> 5 n__cons_0(13,8) -> 20 n__cons_0(13,9) -> 2 n__cons_0(13,9) -> 5 n__cons_0(13,9) -> 20 n__cons_0(13,10) -> 2 n__cons_0(13,10) -> 5 n__cons_0(13,10) -> 20 n__cons_0(13,11) -> 2 n__cons_0(13,11) -> 5 n__cons_0(13,11) -> 20 n__cons_0(13,13) -> 2 n__cons_0(13,13) -> 5 n__cons_0(13,13) -> 20 n__cons_0(13,16) -> 2 n__cons_0(13,16) -> 5 n__cons_0(13,16) -> 20 n__cons_0(16,1) -> 2 n__cons_0(16,1) -> 5 n__cons_0(16,1) -> 20 n__cons_0(16,5) -> 2 n__cons_0(16,5) -> 5 n__cons_0(16,5) -> 20 n__cons_0(16,6) -> 2 n__cons_0(16,6) -> 5 n__cons_0(16,6) -> 20 n__cons_0(16,7) -> 2 n__cons_0(16,7) -> 5 n__cons_0(16,7) -> 20 n__cons_0(16,8) -> 2 n__cons_0(16,8) -> 5 n__cons_0(16,8) -> 20 n__cons_0(16,9) -> 2 n__cons_0(16,9) -> 5 n__cons_0(16,9) -> 20 n__cons_0(16,10) -> 2 n__cons_0(16,10) -> 5 n__cons_0(16,10) -> 20 n__cons_0(16,11) -> 2 n__cons_0(16,11) -> 5 n__cons_0(16,11) -> 20 n__cons_0(16,13) -> 2 n__cons_0(16,13) -> 5 n__cons_0(16,13) -> 20 n__cons_0(16,16) -> 2 n__cons_0(16,16) -> 5 n__cons_0(16,16) -> 20 n__cons_1(1,1) -> 3 n__cons_1(1,5) -> 3 n__cons_1(1,6) -> 3 n__cons_1(1,7) -> 3 n__cons_1(1,8) -> 3 n__cons_1(1,9) -> 3 n__cons_1(1,10) -> 3 n__cons_1(1,11) -> 3 n__cons_1(1,13) -> 3 n__cons_1(1,16) -> 3 n__cons_1(5,1) -> 3 n__cons_1(5,5) -> 3 n__cons_1(5,6) -> 3 n__cons_1(5,7) -> 3 n__cons_1(5,8) -> 3 n__cons_1(5,9) -> 3 n__cons_1(5,10) -> 3 n__cons_1(5,11) -> 3 n__cons_1(5,13) -> 3 n__cons_1(5,16) -> 3 n__cons_1(6,1) -> 3 n__cons_1(6,5) -> 3 n__cons_1(6,6) -> 3 n__cons_1(6,7) -> 3 n__cons_1(6,8) -> 3 n__cons_1(6,9) -> 3 n__cons_1(6,10) -> 3 n__cons_1(6,11) -> 3 n__cons_1(6,13) -> 3 n__cons_1(6,16) -> 3 n__cons_1(7,1) -> 3 n__cons_1(7,5) -> 3 n__cons_1(7,6) -> 3 n__cons_1(7,7) -> 3 n__cons_1(7,8) -> 3 n__cons_1(7,9) -> 3 n__cons_1(7,10) -> 3 n__cons_1(7,11) -> 3 n__cons_1(7,13) -> 3 n__cons_1(7,16) -> 3 n__cons_1(8,1) -> 3 n__cons_1(8,5) -> 3 n__cons_1(8,6) -> 3 n__cons_1(8,7) -> 3 n__cons_1(8,8) -> 3 n__cons_1(8,9) -> 3 n__cons_1(8,10) -> 3 n__cons_1(8,11) -> 3 n__cons_1(8,13) -> 3 n__cons_1(8,16) -> 3 n__cons_1(9,1) -> 3 n__cons_1(9,5) -> 3 n__cons_1(9,6) -> 3 n__cons_1(9,7) -> 3 n__cons_1(9,8) -> 3 n__cons_1(9,9) -> 3 n__cons_1(9,10) -> 3 n__cons_1(9,11) -> 3 n__cons_1(9,13) -> 3 n__cons_1(9,16) -> 3 n__cons_1(10,1) -> 3 n__cons_1(10,5) -> 3 n__cons_1(10,6) -> 3 n__cons_1(10,7) -> 3 n__cons_1(10,8) -> 3 n__cons_1(10,9) -> 3 n__cons_1(10,10) -> 3 n__cons_1(10,11) -> 3 n__cons_1(10,13) -> 3 n__cons_1(10,16) -> 3 n__cons_1(11,1) -> 3 n__cons_1(11,5) -> 3 n__cons_1(11,6) -> 3 n__cons_1(11,7) -> 3 n__cons_1(11,8) -> 3 n__cons_1(11,9) -> 3 n__cons_1(11,10) -> 3 n__cons_1(11,11) -> 3 n__cons_1(11,13) -> 3 n__cons_1(11,16) -> 3 n__cons_1(13,1) -> 3 n__cons_1(13,5) -> 3 n__cons_1(13,6) -> 3 n__cons_1(13,7) -> 3 n__cons_1(13,8) -> 3 n__cons_1(13,9) -> 3 n__cons_1(13,10) -> 3 n__cons_1(13,11) -> 3 n__cons_1(13,13) -> 3 n__cons_1(13,16) -> 3 n__cons_1(16,1) -> 3 n__cons_1(16,5) -> 3 n__cons_1(16,6) -> 3 n__cons_1(16,7) -> 3 n__cons_1(16,8) -> 3 n__cons_1(16,9) -> 3 n__cons_1(16,10) -> 3 n__cons_1(16,11) -> 3 n__cons_1(16,13) -> 3 n__cons_1(16,16) -> 3 n__cons_2(20,1) -> 2 n__cons_2(20,1) -> 20 n__cons_2(20,5) -> 2 n__cons_2(20,5) -> 20 n__cons_2(20,6) -> 2 n__cons_2(20,6) -> 20 n__cons_2(20,7) -> 2 n__cons_2(20,7) -> 20 n__cons_2(20,8) -> 2 n__cons_2(20,8) -> 20 n__cons_2(20,9) -> 2 n__cons_2(20,9) -> 20 n__cons_2(20,10) -> 2 n__cons_2(20,10) -> 20 n__cons_2(20,11) -> 2 n__cons_2(20,11) -> 20 n__cons_2(20,13) -> 2 n__cons_2(20,13) -> 20 n__cons_2(20,16) -> 2 n__cons_2(20,16) -> 20 n__cons_2(23,24) -> 14 n__cons_3(25,20) -> 21 n__cons_4(26,27) -> 22 n__incr_0(1) -> 2 n__incr_0(1) -> 6 n__incr_0(1) -> 20 n__incr_0(5) -> 2 n__incr_0(5) -> 6 n__incr_0(5) -> 20 n__incr_0(6) -> 2 n__incr_0(6) -> 6 n__incr_0(6) -> 20 n__incr_0(7) -> 2 n__incr_0(7) -> 6 n__incr_0(7) -> 20 n__incr_0(8) -> 2 n__incr_0(8) -> 6 n__incr_0(8) -> 20 n__incr_0(9) -> 2 n__incr_0(9) -> 6 n__incr_0(9) -> 20 n__incr_0(10) -> 2 n__incr_0(10) -> 6 n__incr_0(10) -> 20 n__incr_0(11) -> 2 n__incr_0(11) -> 6 n__incr_0(11) -> 20 n__incr_0(13) -> 2 n__incr_0(13) -> 6 n__incr_0(13) -> 20 n__incr_0(16) -> 2 n__incr_0(16) -> 6 n__incr_0(16) -> 20 n__incr_1(1) -> 4 n__incr_1(5) -> 4 n__incr_1(6) -> 4 n__incr_1(7) -> 4 n__incr_1(8) -> 4 n__incr_1(9) -> 4 n__incr_1(10) -> 4 n__incr_1(11) -> 4 n__incr_1(12) -> 24 n__incr_1(13) -> 4 n__incr_1(16) -> 4 n__incr_2(20) -> 2 n__incr_2(20) -> 20 n__incr_2(21) -> 12 n__incr_3(22) -> 2 n__incr_3(22) -> 20 n__incr_3(28) -> 27 n__oddNs_0() -> 2 n__oddNs_0() -> 7 n__oddNs_0() -> 20 n__oddNs_1() -> 12 n__oddNs_2() -> 2 n__oddNs_2() -> 20 n__oddNs_3() -> 28 n__repItems_0(1) -> 2 n__repItems_0(1) -> 8 n__repItems_0(1) -> 20 n__repItems_0(5) -> 2 n__repItems_0(5) -> 8 n__repItems_0(5) -> 20 n__repItems_0(6) -> 2 n__repItems_0(6) -> 8 n__repItems_0(6) -> 20 n__repItems_0(7) -> 2 n__repItems_0(7) -> 8 n__repItems_0(7) -> 20 n__repItems_0(8) -> 2 n__repItems_0(8) -> 8 n__repItems_0(8) -> 20 n__repItems_0(9) -> 2 n__repItems_0(9) -> 8 n__repItems_0(9) -> 20 n__repItems_0(10) -> 2 n__repItems_0(10) -> 8 n__repItems_0(10) -> 20 n__repItems_0(11) -> 2 n__repItems_0(11) -> 8 n__repItems_0(11) -> 20 n__repItems_0(13) -> 2 n__repItems_0(13) -> 8 n__repItems_0(13) -> 20 n__repItems_0(16) -> 2 n__repItems_0(16) -> 8 n__repItems_0(16) -> 20 n__repItems_1(1) -> 15 n__repItems_1(5) -> 15 n__repItems_1(6) -> 15 n__repItems_1(7) -> 15 n__repItems_1(8) -> 15 n__repItems_1(9) -> 15 n__repItems_1(10) -> 15 n__repItems_1(11) -> 15 n__repItems_1(13) -> 15 n__repItems_1(16) -> 15 n__repItems_2(20) -> 2 n__repItems_2(20) -> 20 n__take_0(1,1) -> 2 n__take_0(1,1) -> 9 n__take_0(1,1) -> 20 n__take_0(1,5) -> 2 n__take_0(1,5) -> 9 n__take_0(1,5) -> 20 n__take_0(1,6) -> 2 n__take_0(1,6) -> 9 n__take_0(1,6) -> 20 n__take_0(1,7) -> 2 n__take_0(1,7) -> 9 n__take_0(1,7) -> 20 n__take_0(1,8) -> 2 n__take_0(1,8) -> 9 n__take_0(1,8) -> 20 n__take_0(1,9) -> 2 n__take_0(1,9) -> 9 n__take_0(1,9) -> 20 n__take_0(1,10) -> 2 n__take_0(1,10) -> 9 n__take_0(1,10) -> 20 n__take_0(1,11) -> 2 n__take_0(1,11) -> 9 n__take_0(1,11) -> 20 n__take_0(1,13) -> 2 n__take_0(1,13) -> 9 n__take_0(1,13) -> 20 n__take_0(1,16) -> 2 n__take_0(1,16) -> 9 n__take_0(1,16) -> 20 n__take_0(5,1) -> 2 n__take_0(5,1) -> 9 n__take_0(5,1) -> 20 n__take_0(5,5) -> 2 n__take_0(5,5) -> 9 n__take_0(5,5) -> 20 n__take_0(5,6) -> 2 n__take_0(5,6) -> 9 n__take_0(5,6) -> 20 n__take_0(5,7) -> 2 n__take_0(5,7) -> 9 n__take_0(5,7) -> 20 n__take_0(5,8) -> 2 n__take_0(5,8) -> 9 n__take_0(5,8) -> 20 n__take_0(5,9) -> 2 n__take_0(5,9) -> 9 n__take_0(5,9) -> 20 n__take_0(5,10) -> 2 n__take_0(5,10) -> 9 n__take_0(5,10) -> 20 n__take_0(5,11) -> 2 n__take_0(5,11) -> 9 n__take_0(5,11) -> 20 n__take_0(5,13) -> 2 n__take_0(5,13) -> 9 n__take_0(5,13) -> 20 n__take_0(5,16) -> 2 n__take_0(5,16) -> 9 n__take_0(5,16) -> 20 n__take_0(6,1) -> 2 n__take_0(6,1) -> 9 n__take_0(6,1) -> 20 n__take_0(6,5) -> 2 n__take_0(6,5) -> 9 n__take_0(6,5) -> 20 n__take_0(6,6) -> 2 n__take_0(6,6) -> 9 n__take_0(6,6) -> 20 n__take_0(6,7) -> 2 n__take_0(6,7) -> 9 n__take_0(6,7) -> 20 n__take_0(6,8) -> 2 n__take_0(6,8) -> 9 n__take_0(6,8) -> 20 n__take_0(6,9) -> 2 n__take_0(6,9) -> 9 n__take_0(6,9) -> 20 n__take_0(6,10) -> 2 n__take_0(6,10) -> 9 n__take_0(6,10) -> 20 n__take_0(6,11) -> 2 n__take_0(6,11) -> 9 n__take_0(6,11) -> 20 n__take_0(6,13) -> 2 n__take_0(6,13) -> 9 n__take_0(6,13) -> 20 n__take_0(6,16) -> 2 n__take_0(6,16) -> 9 n__take_0(6,16) -> 20 n__take_0(7,1) -> 2 n__take_0(7,1) -> 9 n__take_0(7,1) -> 20 n__take_0(7,5) -> 2 n__take_0(7,5) -> 9 n__take_0(7,5) -> 20 n__take_0(7,6) -> 2 n__take_0(7,6) -> 9 n__take_0(7,6) -> 20 n__take_0(7,7) -> 2 n__take_0(7,7) -> 9 n__take_0(7,7) -> 20 n__take_0(7,8) -> 2 n__take_0(7,8) -> 9 n__take_0(7,8) -> 20 n__take_0(7,9) -> 2 n__take_0(7,9) -> 9 n__take_0(7,9) -> 20 n__take_0(7,10) -> 2 n__take_0(7,10) -> 9 n__take_0(7,10) -> 20 n__take_0(7,11) -> 2 n__take_0(7,11) -> 9 n__take_0(7,11) -> 20 n__take_0(7,13) -> 2 n__take_0(7,13) -> 9 n__take_0(7,13) -> 20 n__take_0(7,16) -> 2 n__take_0(7,16) -> 9 n__take_0(7,16) -> 20 n__take_0(8,1) -> 2 n__take_0(8,1) -> 9 n__take_0(8,1) -> 20 n__take_0(8,5) -> 2 n__take_0(8,5) -> 9 n__take_0(8,5) -> 20 n__take_0(8,6) -> 2 n__take_0(8,6) -> 9 n__take_0(8,6) -> 20 n__take_0(8,7) -> 2 n__take_0(8,7) -> 9 n__take_0(8,7) -> 20 n__take_0(8,8) -> 2 n__take_0(8,8) -> 9 n__take_0(8,8) -> 20 n__take_0(8,9) -> 2 n__take_0(8,9) -> 9 n__take_0(8,9) -> 20 n__take_0(8,10) -> 2 n__take_0(8,10) -> 9 n__take_0(8,10) -> 20 n__take_0(8,11) -> 2 n__take_0(8,11) -> 9 n__take_0(8,11) -> 20 n__take_0(8,13) -> 2 n__take_0(8,13) -> 9 n__take_0(8,13) -> 20 n__take_0(8,16) -> 2 n__take_0(8,16) -> 9 n__take_0(8,16) -> 20 n__take_0(9,1) -> 2 n__take_0(9,1) -> 9 n__take_0(9,1) -> 20 n__take_0(9,5) -> 2 n__take_0(9,5) -> 9 n__take_0(9,5) -> 20 n__take_0(9,6) -> 2 n__take_0(9,6) -> 9 n__take_0(9,6) -> 20 n__take_0(9,7) -> 2 n__take_0(9,7) -> 9 n__take_0(9,7) -> 20 n__take_0(9,8) -> 2 n__take_0(9,8) -> 9 n__take_0(9,8) -> 20 n__take_0(9,9) -> 2 n__take_0(9,9) -> 9 n__take_0(9,9) -> 20 n__take_0(9,10) -> 2 n__take_0(9,10) -> 9 n__take_0(9,10) -> 20 n__take_0(9,11) -> 2 n__take_0(9,11) -> 9 n__take_0(9,11) -> 20 n__take_0(9,13) -> 2 n__take_0(9,13) -> 9 n__take_0(9,13) -> 20 n__take_0(9,16) -> 2 n__take_0(9,16) -> 9 n__take_0(9,16) -> 20 n__take_0(10,1) -> 2 n__take_0(10,1) -> 9 n__take_0(10,1) -> 20 n__take_0(10,5) -> 2 n__take_0(10,5) -> 9 n__take_0(10,5) -> 20 n__take_0(10,6) -> 2 n__take_0(10,6) -> 9 n__take_0(10,6) -> 20 n__take_0(10,7) -> 2 n__take_0(10,7) -> 9 n__take_0(10,7) -> 20 n__take_0(10,8) -> 2 n__take_0(10,8) -> 9 n__take_0(10,8) -> 20 n__take_0(10,9) -> 2 n__take_0(10,9) -> 9 n__take_0(10,9) -> 20 n__take_0(10,10) -> 2 n__take_0(10,10) -> 9 n__take_0(10,10) -> 20 n__take_0(10,11) -> 2 n__take_0(10,11) -> 9 n__take_0(10,11) -> 20 n__take_0(10,13) -> 2 n__take_0(10,13) -> 9 n__take_0(10,13) -> 20 n__take_0(10,16) -> 2 n__take_0(10,16) -> 9 n__take_0(10,16) -> 20 n__take_0(11,1) -> 2 n__take_0(11,1) -> 9 n__take_0(11,1) -> 20 n__take_0(11,5) -> 2 n__take_0(11,5) -> 9 n__take_0(11,5) -> 20 n__take_0(11,6) -> 2 n__take_0(11,6) -> 9 n__take_0(11,6) -> 20 n__take_0(11,7) -> 2 n__take_0(11,7) -> 9 n__take_0(11,7) -> 20 n__take_0(11,8) -> 2 n__take_0(11,8) -> 9 n__take_0(11,8) -> 20 n__take_0(11,9) -> 2 n__take_0(11,9) -> 9 n__take_0(11,9) -> 20 n__take_0(11,10) -> 2 n__take_0(11,10) -> 9 n__take_0(11,10) -> 20 n__take_0(11,11) -> 2 n__take_0(11,11) -> 9 n__take_0(11,11) -> 20 n__take_0(11,13) -> 2 n__take_0(11,13) -> 9 n__take_0(11,13) -> 20 n__take_0(11,16) -> 2 n__take_0(11,16) -> 9 n__take_0(11,16) -> 20 n__take_0(13,1) -> 2 n__take_0(13,1) -> 9 n__take_0(13,1) -> 20 n__take_0(13,5) -> 2 n__take_0(13,5) -> 9 n__take_0(13,5) -> 20 n__take_0(13,6) -> 2 n__take_0(13,6) -> 9 n__take_0(13,6) -> 20 n__take_0(13,7) -> 2 n__take_0(13,7) -> 9 n__take_0(13,7) -> 20 n__take_0(13,8) -> 2 n__take_0(13,8) -> 9 n__take_0(13,8) -> 20 n__take_0(13,9) -> 2 n__take_0(13,9) -> 9 n__take_0(13,9) -> 20 n__take_0(13,10) -> 2 n__take_0(13,10) -> 9 n__take_0(13,10) -> 20 n__take_0(13,11) -> 2 n__take_0(13,11) -> 9 n__take_0(13,11) -> 20 n__take_0(13,13) -> 2 n__take_0(13,13) -> 9 n__take_0(13,13) -> 20 n__take_0(13,16) -> 2 n__take_0(13,16) -> 9 n__take_0(13,16) -> 20 n__take_0(16,1) -> 2 n__take_0(16,1) -> 9 n__take_0(16,1) -> 20 n__take_0(16,5) -> 2 n__take_0(16,5) -> 9 n__take_0(16,5) -> 20 n__take_0(16,6) -> 2 n__take_0(16,6) -> 9 n__take_0(16,6) -> 20 n__take_0(16,7) -> 2 n__take_0(16,7) -> 9 n__take_0(16,7) -> 20 n__take_0(16,8) -> 2 n__take_0(16,8) -> 9 n__take_0(16,8) -> 20 n__take_0(16,9) -> 2 n__take_0(16,9) -> 9 n__take_0(16,9) -> 20 n__take_0(16,10) -> 2 n__take_0(16,10) -> 9 n__take_0(16,10) -> 20 n__take_0(16,11) -> 2 n__take_0(16,11) -> 9 n__take_0(16,11) -> 20 n__take_0(16,13) -> 2 n__take_0(16,13) -> 9 n__take_0(16,13) -> 20 n__take_0(16,16) -> 2 n__take_0(16,16) -> 9 n__take_0(16,16) -> 20 n__take_1(1,1) -> 18 n__take_1(1,5) -> 18 n__take_1(1,6) -> 18 n__take_1(1,7) -> 18 n__take_1(1,8) -> 18 n__take_1(1,9) -> 18 n__take_1(1,10) -> 18 n__take_1(1,11) -> 18 n__take_1(1,13) -> 18 n__take_1(1,16) -> 18 n__take_1(5,1) -> 18 n__take_1(5,5) -> 18 n__take_1(5,6) -> 18 n__take_1(5,7) -> 18 n__take_1(5,8) -> 18 n__take_1(5,9) -> 18 n__take_1(5,10) -> 18 n__take_1(5,11) -> 18 n__take_1(5,13) -> 18 n__take_1(5,16) -> 18 n__take_1(6,1) -> 18 n__take_1(6,5) -> 18 n__take_1(6,6) -> 18 n__take_1(6,7) -> 18 n__take_1(6,8) -> 18 n__take_1(6,9) -> 18 n__take_1(6,10) -> 18 n__take_1(6,11) -> 18 n__take_1(6,13) -> 18 n__take_1(6,16) -> 18 n__take_1(7,1) -> 18 n__take_1(7,5) -> 18 n__take_1(7,6) -> 18 n__take_1(7,7) -> 18 n__take_1(7,8) -> 18 n__take_1(7,9) -> 18 n__take_1(7,10) -> 18 n__take_1(7,11) -> 18 n__take_1(7,13) -> 18 n__take_1(7,16) -> 18 n__take_1(8,1) -> 18 n__take_1(8,5) -> 18 n__take_1(8,6) -> 18 n__take_1(8,7) -> 18 n__take_1(8,8) -> 18 n__take_1(8,9) -> 18 n__take_1(8,10) -> 18 n__take_1(8,11) -> 18 n__take_1(8,13) -> 18 n__take_1(8,16) -> 18 n__take_1(9,1) -> 18 n__take_1(9,5) -> 18 n__take_1(9,6) -> 18 n__take_1(9,7) -> 18 n__take_1(9,8) -> 18 n__take_1(9,9) -> 18 n__take_1(9,10) -> 18 n__take_1(9,11) -> 18 n__take_1(9,13) -> 18 n__take_1(9,16) -> 18 n__take_1(10,1) -> 18 n__take_1(10,5) -> 18 n__take_1(10,6) -> 18 n__take_1(10,7) -> 18 n__take_1(10,8) -> 18 n__take_1(10,9) -> 18 n__take_1(10,10) -> 18 n__take_1(10,11) -> 18 n__take_1(10,13) -> 18 n__take_1(10,16) -> 18 n__take_1(11,1) -> 18 n__take_1(11,5) -> 18 n__take_1(11,6) -> 18 n__take_1(11,7) -> 18 n__take_1(11,8) -> 18 n__take_1(11,9) -> 18 n__take_1(11,10) -> 18 n__take_1(11,11) -> 18 n__take_1(11,13) -> 18 n__take_1(11,16) -> 18 n__take_1(13,1) -> 18 n__take_1(13,5) -> 18 n__take_1(13,6) -> 18 n__take_1(13,7) -> 18 n__take_1(13,8) -> 18 n__take_1(13,9) -> 18 n__take_1(13,10) -> 18 n__take_1(13,11) -> 18 n__take_1(13,13) -> 18 n__take_1(13,16) -> 18 n__take_1(16,1) -> 18 n__take_1(16,5) -> 18 n__take_1(16,6) -> 18 n__take_1(16,7) -> 18 n__take_1(16,8) -> 18 n__take_1(16,9) -> 18 n__take_1(16,10) -> 18 n__take_1(16,11) -> 18 n__take_1(16,13) -> 18 n__take_1(16,16) -> 18 n__take_2(20,20) -> 2 n__take_2(20,20) -> 20 n__zip_0(1,1) -> 2 n__zip_0(1,1) -> 10 n__zip_0(1,1) -> 20 n__zip_0(1,5) -> 2 n__zip_0(1,5) -> 10 n__zip_0(1,5) -> 20 n__zip_0(1,6) -> 2 n__zip_0(1,6) -> 10 n__zip_0(1,6) -> 20 n__zip_0(1,7) -> 2 n__zip_0(1,7) -> 10 n__zip_0(1,7) -> 20 n__zip_0(1,8) -> 2 n__zip_0(1,8) -> 10 n__zip_0(1,8) -> 20 n__zip_0(1,9) -> 2 n__zip_0(1,9) -> 10 n__zip_0(1,9) -> 20 n__zip_0(1,10) -> 2 n__zip_0(1,10) -> 10 n__zip_0(1,10) -> 20 n__zip_0(1,11) -> 2 n__zip_0(1,11) -> 10 n__zip_0(1,11) -> 20 n__zip_0(1,13) -> 2 n__zip_0(1,13) -> 10 n__zip_0(1,13) -> 20 n__zip_0(1,16) -> 2 n__zip_0(1,16) -> 10 n__zip_0(1,16) -> 20 n__zip_0(5,1) -> 2 n__zip_0(5,1) -> 10 n__zip_0(5,1) -> 20 n__zip_0(5,5) -> 2 n__zip_0(5,5) -> 10 n__zip_0(5,5) -> 20 n__zip_0(5,6) -> 2 n__zip_0(5,6) -> 10 n__zip_0(5,6) -> 20 n__zip_0(5,7) -> 2 n__zip_0(5,7) -> 10 n__zip_0(5,7) -> 20 n__zip_0(5,8) -> 2 n__zip_0(5,8) -> 10 n__zip_0(5,8) -> 20 n__zip_0(5,9) -> 2 n__zip_0(5,9) -> 10 n__zip_0(5,9) -> 20 n__zip_0(5,10) -> 2 n__zip_0(5,10) -> 10 n__zip_0(5,10) -> 20 n__zip_0(5,11) -> 2 n__zip_0(5,11) -> 10 n__zip_0(5,11) -> 20 n__zip_0(5,13) -> 2 n__zip_0(5,13) -> 10 n__zip_0(5,13) -> 20 n__zip_0(5,16) -> 2 n__zip_0(5,16) -> 10 n__zip_0(5,16) -> 20 n__zip_0(6,1) -> 2 n__zip_0(6,1) -> 10 n__zip_0(6,1) -> 20 n__zip_0(6,5) -> 2 n__zip_0(6,5) -> 10 n__zip_0(6,5) -> 20 n__zip_0(6,6) -> 2 n__zip_0(6,6) -> 10 n__zip_0(6,6) -> 20 n__zip_0(6,7) -> 2 n__zip_0(6,7) -> 10 n__zip_0(6,7) -> 20 n__zip_0(6,8) -> 2 n__zip_0(6,8) -> 10 n__zip_0(6,8) -> 20 n__zip_0(6,9) -> 2 n__zip_0(6,9) -> 10 n__zip_0(6,9) -> 20 n__zip_0(6,10) -> 2 n__zip_0(6,10) -> 10 n__zip_0(6,10) -> 20 n__zip_0(6,11) -> 2 n__zip_0(6,11) -> 10 n__zip_0(6,11) -> 20 n__zip_0(6,13) -> 2 n__zip_0(6,13) -> 10 n__zip_0(6,13) -> 20 n__zip_0(6,16) -> 2 n__zip_0(6,16) -> 10 n__zip_0(6,16) -> 20 n__zip_0(7,1) -> 2 n__zip_0(7,1) -> 10 n__zip_0(7,1) -> 20 n__zip_0(7,5) -> 2 n__zip_0(7,5) -> 10 n__zip_0(7,5) -> 20 n__zip_0(7,6) -> 2 n__zip_0(7,6) -> 10 n__zip_0(7,6) -> 20 n__zip_0(7,7) -> 2 n__zip_0(7,7) -> 10 n__zip_0(7,7) -> 20 n__zip_0(7,8) -> 2 n__zip_0(7,8) -> 10 n__zip_0(7,8) -> 20 n__zip_0(7,9) -> 2 n__zip_0(7,9) -> 10 n__zip_0(7,9) -> 20 n__zip_0(7,10) -> 2 n__zip_0(7,10) -> 10 n__zip_0(7,10) -> 20 n__zip_0(7,11) -> 2 n__zip_0(7,11) -> 10 n__zip_0(7,11) -> 20 n__zip_0(7,13) -> 2 n__zip_0(7,13) -> 10 n__zip_0(7,13) -> 20 n__zip_0(7,16) -> 2 n__zip_0(7,16) -> 10 n__zip_0(7,16) -> 20 n__zip_0(8,1) -> 2 n__zip_0(8,1) -> 10 n__zip_0(8,1) -> 20 n__zip_0(8,5) -> 2 n__zip_0(8,5) -> 10 n__zip_0(8,5) -> 20 n__zip_0(8,6) -> 2 n__zip_0(8,6) -> 10 n__zip_0(8,6) -> 20 n__zip_0(8,7) -> 2 n__zip_0(8,7) -> 10 n__zip_0(8,7) -> 20 n__zip_0(8,8) -> 2 n__zip_0(8,8) -> 10 n__zip_0(8,8) -> 20 n__zip_0(8,9) -> 2 n__zip_0(8,9) -> 10 n__zip_0(8,9) -> 20 n__zip_0(8,10) -> 2 n__zip_0(8,10) -> 10 n__zip_0(8,10) -> 20 n__zip_0(8,11) -> 2 n__zip_0(8,11) -> 10 n__zip_0(8,11) -> 20 n__zip_0(8,13) -> 2 n__zip_0(8,13) -> 10 n__zip_0(8,13) -> 20 n__zip_0(8,16) -> 2 n__zip_0(8,16) -> 10 n__zip_0(8,16) -> 20 n__zip_0(9,1) -> 2 n__zip_0(9,1) -> 10 n__zip_0(9,1) -> 20 n__zip_0(9,5) -> 2 n__zip_0(9,5) -> 10 n__zip_0(9,5) -> 20 n__zip_0(9,6) -> 2 n__zip_0(9,6) -> 10 n__zip_0(9,6) -> 20 n__zip_0(9,7) -> 2 n__zip_0(9,7) -> 10 n__zip_0(9,7) -> 20 n__zip_0(9,8) -> 2 n__zip_0(9,8) -> 10 n__zip_0(9,8) -> 20 n__zip_0(9,9) -> 2 n__zip_0(9,9) -> 10 n__zip_0(9,9) -> 20 n__zip_0(9,10) -> 2 n__zip_0(9,10) -> 10 n__zip_0(9,10) -> 20 n__zip_0(9,11) -> 2 n__zip_0(9,11) -> 10 n__zip_0(9,11) -> 20 n__zip_0(9,13) -> 2 n__zip_0(9,13) -> 10 n__zip_0(9,13) -> 20 n__zip_0(9,16) -> 2 n__zip_0(9,16) -> 10 n__zip_0(9,16) -> 20 n__zip_0(10,1) -> 2 n__zip_0(10,1) -> 10 n__zip_0(10,1) -> 20 n__zip_0(10,5) -> 2 n__zip_0(10,5) -> 10 n__zip_0(10,5) -> 20 n__zip_0(10,6) -> 2 n__zip_0(10,6) -> 10 n__zip_0(10,6) -> 20 n__zip_0(10,7) -> 2 n__zip_0(10,7) -> 10 n__zip_0(10,7) -> 20 n__zip_0(10,8) -> 2 n__zip_0(10,8) -> 10 n__zip_0(10,8) -> 20 n__zip_0(10,9) -> 2 n__zip_0(10,9) -> 10 n__zip_0(10,9) -> 20 n__zip_0(10,10) -> 2 n__zip_0(10,10) -> 10 n__zip_0(10,10) -> 20 n__zip_0(10,11) -> 2 n__zip_0(10,11) -> 10 n__zip_0(10,11) -> 20 n__zip_0(10,13) -> 2 n__zip_0(10,13) -> 10 n__zip_0(10,13) -> 20 n__zip_0(10,16) -> 2 n__zip_0(10,16) -> 10 n__zip_0(10,16) -> 20 n__zip_0(11,1) -> 2 n__zip_0(11,1) -> 10 n__zip_0(11,1) -> 20 n__zip_0(11,5) -> 2 n__zip_0(11,5) -> 10 n__zip_0(11,5) -> 20 n__zip_0(11,6) -> 2 n__zip_0(11,6) -> 10 n__zip_0(11,6) -> 20 n__zip_0(11,7) -> 2 n__zip_0(11,7) -> 10 n__zip_0(11,7) -> 20 n__zip_0(11,8) -> 2 n__zip_0(11,8) -> 10 n__zip_0(11,8) -> 20 n__zip_0(11,9) -> 2 n__zip_0(11,9) -> 10 n__zip_0(11,9) -> 20 n__zip_0(11,10) -> 2 n__zip_0(11,10) -> 10 n__zip_0(11,10) -> 20 n__zip_0(11,11) -> 2 n__zip_0(11,11) -> 10 n__zip_0(11,11) -> 20 n__zip_0(11,13) -> 2 n__zip_0(11,13) -> 10 n__zip_0(11,13) -> 20 n__zip_0(11,16) -> 2 n__zip_0(11,16) -> 10 n__zip_0(11,16) -> 20 n__zip_0(13,1) -> 2 n__zip_0(13,1) -> 10 n__zip_0(13,1) -> 20 n__zip_0(13,5) -> 2 n__zip_0(13,5) -> 10 n__zip_0(13,5) -> 20 n__zip_0(13,6) -> 2 n__zip_0(13,6) -> 10 n__zip_0(13,6) -> 20 n__zip_0(13,7) -> 2 n__zip_0(13,7) -> 10 n__zip_0(13,7) -> 20 n__zip_0(13,8) -> 2 n__zip_0(13,8) -> 10 n__zip_0(13,8) -> 20 n__zip_0(13,9) -> 2 n__zip_0(13,9) -> 10 n__zip_0(13,9) -> 20 n__zip_0(13,10) -> 2 n__zip_0(13,10) -> 10 n__zip_0(13,10) -> 20 n__zip_0(13,11) -> 2 n__zip_0(13,11) -> 10 n__zip_0(13,11) -> 20 n__zip_0(13,13) -> 2 n__zip_0(13,13) -> 10 n__zip_0(13,13) -> 20 n__zip_0(13,16) -> 2 n__zip_0(13,16) -> 10 n__zip_0(13,16) -> 20 n__zip_0(16,1) -> 2 n__zip_0(16,1) -> 10 n__zip_0(16,1) -> 20 n__zip_0(16,5) -> 2 n__zip_0(16,5) -> 10 n__zip_0(16,5) -> 20 n__zip_0(16,6) -> 2 n__zip_0(16,6) -> 10 n__zip_0(16,6) -> 20 n__zip_0(16,7) -> 2 n__zip_0(16,7) -> 10 n__zip_0(16,7) -> 20 n__zip_0(16,8) -> 2 n__zip_0(16,8) -> 10 n__zip_0(16,8) -> 20 n__zip_0(16,9) -> 2 n__zip_0(16,9) -> 10 n__zip_0(16,9) -> 20 n__zip_0(16,10) -> 2 n__zip_0(16,10) -> 10 n__zip_0(16,10) -> 20 n__zip_0(16,11) -> 2 n__zip_0(16,11) -> 10 n__zip_0(16,11) -> 20 n__zip_0(16,13) -> 2 n__zip_0(16,13) -> 10 n__zip_0(16,13) -> 20 n__zip_0(16,16) -> 2 n__zip_0(16,16) -> 10 n__zip_0(16,16) -> 20 n__zip_1(1,1) -> 19 n__zip_1(1,5) -> 19 n__zip_1(1,6) -> 19 n__zip_1(1,7) -> 19 n__zip_1(1,8) -> 19 n__zip_1(1,9) -> 19 n__zip_1(1,10) -> 19 n__zip_1(1,11) -> 19 n__zip_1(1,13) -> 19 n__zip_1(1,16) -> 19 n__zip_1(5,1) -> 19 n__zip_1(5,5) -> 19 n__zip_1(5,6) -> 19 n__zip_1(5,7) -> 19 n__zip_1(5,8) -> 19 n__zip_1(5,9) -> 19 n__zip_1(5,10) -> 19 n__zip_1(5,11) -> 19 n__zip_1(5,13) -> 19 n__zip_1(5,16) -> 19 n__zip_1(6,1) -> 19 n__zip_1(6,5) -> 19 n__zip_1(6,6) -> 19 n__zip_1(6,7) -> 19 n__zip_1(6,8) -> 19 n__zip_1(6,9) -> 19 n__zip_1(6,10) -> 19 n__zip_1(6,11) -> 19 n__zip_1(6,13) -> 19 n__zip_1(6,16) -> 19 n__zip_1(7,1) -> 19 n__zip_1(7,5) -> 19 n__zip_1(7,6) -> 19 n__zip_1(7,7) -> 19 n__zip_1(7,8) -> 19 n__zip_1(7,9) -> 19 n__zip_1(7,10) -> 19 n__zip_1(7,11) -> 19 n__zip_1(7,13) -> 19 n__zip_1(7,16) -> 19 n__zip_1(8,1) -> 19 n__zip_1(8,5) -> 19 n__zip_1(8,6) -> 19 n__zip_1(8,7) -> 19 n__zip_1(8,8) -> 19 n__zip_1(8,9) -> 19 n__zip_1(8,10) -> 19 n__zip_1(8,11) -> 19 n__zip_1(8,13) -> 19 n__zip_1(8,16) -> 19 n__zip_1(9,1) -> 19 n__zip_1(9,5) -> 19 n__zip_1(9,6) -> 19 n__zip_1(9,7) -> 19 n__zip_1(9,8) -> 19 n__zip_1(9,9) -> 19 n__zip_1(9,10) -> 19 n__zip_1(9,11) -> 19 n__zip_1(9,13) -> 19 n__zip_1(9,16) -> 19 n__zip_1(10,1) -> 19 n__zip_1(10,5) -> 19 n__zip_1(10,6) -> 19 n__zip_1(10,7) -> 19 n__zip_1(10,8) -> 19 n__zip_1(10,9) -> 19 n__zip_1(10,10) -> 19 n__zip_1(10,11) -> 19 n__zip_1(10,13) -> 19 n__zip_1(10,16) -> 19 n__zip_1(11,1) -> 19 n__zip_1(11,5) -> 19 n__zip_1(11,6) -> 19 n__zip_1(11,7) -> 19 n__zip_1(11,8) -> 19 n__zip_1(11,9) -> 19 n__zip_1(11,10) -> 19 n__zip_1(11,11) -> 19 n__zip_1(11,13) -> 19 n__zip_1(11,16) -> 19 n__zip_1(13,1) -> 19 n__zip_1(13,5) -> 19 n__zip_1(13,6) -> 19 n__zip_1(13,7) -> 19 n__zip_1(13,8) -> 19 n__zip_1(13,9) -> 19 n__zip_1(13,10) -> 19 n__zip_1(13,11) -> 19 n__zip_1(13,13) -> 19 n__zip_1(13,16) -> 19 n__zip_1(16,1) -> 19 n__zip_1(16,5) -> 19 n__zip_1(16,6) -> 19 n__zip_1(16,7) -> 19 n__zip_1(16,8) -> 19 n__zip_1(16,9) -> 19 n__zip_1(16,10) -> 19 n__zip_1(16,11) -> 19 n__zip_1(16,13) -> 19 n__zip_1(16,16) -> 19 n__zip_2(20,20) -> 2 n__zip_2(20,20) -> 20 nil_0() -> 2 nil_0() -> 11 nil_0() -> 20 nil_1() -> 2 nil_1() -> 15 nil_1() -> 18 nil_1() -> 19 nil_1() -> 20 nil_2() -> 2 nil_2() -> 20 oddNs_0() -> 12 oddNs_1() -> 2 oddNs_1() -> 20 pair_0(1,1) -> 2 pair_0(1,1) -> 13 pair_0(1,1) -> 20 pair_0(1,5) -> 2 pair_0(1,5) -> 13 pair_0(1,5) -> 20 pair_0(1,6) -> 2 pair_0(1,6) -> 13 pair_0(1,6) -> 20 pair_0(1,7) -> 2 pair_0(1,7) -> 13 pair_0(1,7) -> 20 pair_0(1,8) -> 2 pair_0(1,8) -> 13 pair_0(1,8) -> 20 pair_0(1,9) -> 2 pair_0(1,9) -> 13 pair_0(1,9) -> 20 pair_0(1,10) -> 2 pair_0(1,10) -> 13 pair_0(1,10) -> 20 pair_0(1,11) -> 2 pair_0(1,11) -> 13 pair_0(1,11) -> 20 pair_0(1,13) -> 2 pair_0(1,13) -> 13 pair_0(1,13) -> 20 pair_0(1,16) -> 2 pair_0(1,16) -> 13 pair_0(1,16) -> 20 pair_0(5,1) -> 2 pair_0(5,1) -> 13 pair_0(5,1) -> 20 pair_0(5,5) -> 2 pair_0(5,5) -> 13 pair_0(5,5) -> 20 pair_0(5,6) -> 2 pair_0(5,6) -> 13 pair_0(5,6) -> 20 pair_0(5,7) -> 2 pair_0(5,7) -> 13 pair_0(5,7) -> 20 pair_0(5,8) -> 2 pair_0(5,8) -> 13 pair_0(5,8) -> 20 pair_0(5,9) -> 2 pair_0(5,9) -> 13 pair_0(5,9) -> 20 pair_0(5,10) -> 2 pair_0(5,10) -> 13 pair_0(5,10) -> 20 pair_0(5,11) -> 2 pair_0(5,11) -> 13 pair_0(5,11) -> 20 pair_0(5,13) -> 2 pair_0(5,13) -> 13 pair_0(5,13) -> 20 pair_0(5,16) -> 2 pair_0(5,16) -> 13 pair_0(5,16) -> 20 pair_0(6,1) -> 2 pair_0(6,1) -> 13 pair_0(6,1) -> 20 pair_0(6,5) -> 2 pair_0(6,5) -> 13 pair_0(6,5) -> 20 pair_0(6,6) -> 2 pair_0(6,6) -> 13 pair_0(6,6) -> 20 pair_0(6,7) -> 2 pair_0(6,7) -> 13 pair_0(6,7) -> 20 pair_0(6,8) -> 2 pair_0(6,8) -> 13 pair_0(6,8) -> 20 pair_0(6,9) -> 2 pair_0(6,9) -> 13 pair_0(6,9) -> 20 pair_0(6,10) -> 2 pair_0(6,10) -> 13 pair_0(6,10) -> 20 pair_0(6,11) -> 2 pair_0(6,11) -> 13 pair_0(6,11) -> 20 pair_0(6,13) -> 2 pair_0(6,13) -> 13 pair_0(6,13) -> 20 pair_0(6,16) -> 2 pair_0(6,16) -> 13 pair_0(6,16) -> 20 pair_0(7,1) -> 2 pair_0(7,1) -> 13 pair_0(7,1) -> 20 pair_0(7,5) -> 2 pair_0(7,5) -> 13 pair_0(7,5) -> 20 pair_0(7,6) -> 2 pair_0(7,6) -> 13 pair_0(7,6) -> 20 pair_0(7,7) -> 2 pair_0(7,7) -> 13 pair_0(7,7) -> 20 pair_0(7,8) -> 2 pair_0(7,8) -> 13 pair_0(7,8) -> 20 pair_0(7,9) -> 2 pair_0(7,9) -> 13 pair_0(7,9) -> 20 pair_0(7,10) -> 2 pair_0(7,10) -> 13 pair_0(7,10) -> 20 pair_0(7,11) -> 2 pair_0(7,11) -> 13 pair_0(7,11) -> 20 pair_0(7,13) -> 2 pair_0(7,13) -> 13 pair_0(7,13) -> 20 pair_0(7,16) -> 2 pair_0(7,16) -> 13 pair_0(7,16) -> 20 pair_0(8,1) -> 2 pair_0(8,1) -> 13 pair_0(8,1) -> 20 pair_0(8,5) -> 2 pair_0(8,5) -> 13 pair_0(8,5) -> 20 pair_0(8,6) -> 2 pair_0(8,6) -> 13 pair_0(8,6) -> 20 pair_0(8,7) -> 2 pair_0(8,7) -> 13 pair_0(8,7) -> 20 pair_0(8,8) -> 2 pair_0(8,8) -> 13 pair_0(8,8) -> 20 pair_0(8,9) -> 2 pair_0(8,9) -> 13 pair_0(8,9) -> 20 pair_0(8,10) -> 2 pair_0(8,10) -> 13 pair_0(8,10) -> 20 pair_0(8,11) -> 2 pair_0(8,11) -> 13 pair_0(8,11) -> 20 pair_0(8,13) -> 2 pair_0(8,13) -> 13 pair_0(8,13) -> 20 pair_0(8,16) -> 2 pair_0(8,16) -> 13 pair_0(8,16) -> 20 pair_0(9,1) -> 2 pair_0(9,1) -> 13 pair_0(9,1) -> 20 pair_0(9,5) -> 2 pair_0(9,5) -> 13 pair_0(9,5) -> 20 pair_0(9,6) -> 2 pair_0(9,6) -> 13 pair_0(9,6) -> 20 pair_0(9,7) -> 2 pair_0(9,7) -> 13 pair_0(9,7) -> 20 pair_0(9,8) -> 2 pair_0(9,8) -> 13 pair_0(9,8) -> 20 pair_0(9,9) -> 2 pair_0(9,9) -> 13 pair_0(9,9) -> 20 pair_0(9,10) -> 2 pair_0(9,10) -> 13 pair_0(9,10) -> 20 pair_0(9,11) -> 2 pair_0(9,11) -> 13 pair_0(9,11) -> 20 pair_0(9,13) -> 2 pair_0(9,13) -> 13 pair_0(9,13) -> 20 pair_0(9,16) -> 2 pair_0(9,16) -> 13 pair_0(9,16) -> 20 pair_0(10,1) -> 2 pair_0(10,1) -> 13 pair_0(10,1) -> 20 pair_0(10,5) -> 2 pair_0(10,5) -> 13 pair_0(10,5) -> 20 pair_0(10,6) -> 2 pair_0(10,6) -> 13 pair_0(10,6) -> 20 pair_0(10,7) -> 2 pair_0(10,7) -> 13 pair_0(10,7) -> 20 pair_0(10,8) -> 2 pair_0(10,8) -> 13 pair_0(10,8) -> 20 pair_0(10,9) -> 2 pair_0(10,9) -> 13 pair_0(10,9) -> 20 pair_0(10,10) -> 2 pair_0(10,10) -> 13 pair_0(10,10) -> 20 pair_0(10,11) -> 2 pair_0(10,11) -> 13 pair_0(10,11) -> 20 pair_0(10,13) -> 2 pair_0(10,13) -> 13 pair_0(10,13) -> 20 pair_0(10,16) -> 2 pair_0(10,16) -> 13 pair_0(10,16) -> 20 pair_0(11,1) -> 2 pair_0(11,1) -> 13 pair_0(11,1) -> 20 pair_0(11,5) -> 2 pair_0(11,5) -> 13 pair_0(11,5) -> 20 pair_0(11,6) -> 2 pair_0(11,6) -> 13 pair_0(11,6) -> 20 pair_0(11,7) -> 2 pair_0(11,7) -> 13 pair_0(11,7) -> 20 pair_0(11,8) -> 2 pair_0(11,8) -> 13 pair_0(11,8) -> 20 pair_0(11,9) -> 2 pair_0(11,9) -> 13 pair_0(11,9) -> 20 pair_0(11,10) -> 2 pair_0(11,10) -> 13 pair_0(11,10) -> 20 pair_0(11,11) -> 2 pair_0(11,11) -> 13 pair_0(11,11) -> 20 pair_0(11,13) -> 2 pair_0(11,13) -> 13 pair_0(11,13) -> 20 pair_0(11,16) -> 2 pair_0(11,16) -> 13 pair_0(11,16) -> 20 pair_0(13,1) -> 2 pair_0(13,1) -> 13 pair_0(13,1) -> 20 pair_0(13,5) -> 2 pair_0(13,5) -> 13 pair_0(13,5) -> 20 pair_0(13,6) -> 2 pair_0(13,6) -> 13 pair_0(13,6) -> 20 pair_0(13,7) -> 2 pair_0(13,7) -> 13 pair_0(13,7) -> 20 pair_0(13,8) -> 2 pair_0(13,8) -> 13 pair_0(13,8) -> 20 pair_0(13,9) -> 2 pair_0(13,9) -> 13 pair_0(13,9) -> 20 pair_0(13,10) -> 2 pair_0(13,10) -> 13 pair_0(13,10) -> 20 pair_0(13,11) -> 2 pair_0(13,11) -> 13 pair_0(13,11) -> 20 pair_0(13,13) -> 2 pair_0(13,13) -> 13 pair_0(13,13) -> 20 pair_0(13,16) -> 2 pair_0(13,16) -> 13 pair_0(13,16) -> 20 pair_0(16,1) -> 2 pair_0(16,1) -> 13 pair_0(16,1) -> 20 pair_0(16,5) -> 2 pair_0(16,5) -> 13 pair_0(16,5) -> 20 pair_0(16,6) -> 2 pair_0(16,6) -> 13 pair_0(16,6) -> 20 pair_0(16,7) -> 2 pair_0(16,7) -> 13 pair_0(16,7) -> 20 pair_0(16,8) -> 2 pair_0(16,8) -> 13 pair_0(16,8) -> 20 pair_0(16,9) -> 2 pair_0(16,9) -> 13 pair_0(16,9) -> 20 pair_0(16,10) -> 2 pair_0(16,10) -> 13 pair_0(16,10) -> 20 pair_0(16,11) -> 2 pair_0(16,11) -> 13 pair_0(16,11) -> 20 pair_0(16,13) -> 2 pair_0(16,13) -> 13 pair_0(16,13) -> 20 pair_0(16,16) -> 2 pair_0(16,16) -> 13 pair_0(16,16) -> 20 pairNs_0() -> 14 pairNs_1() -> 21 pairNs_2() -> 22 repItems_0(1) -> 15 repItems_0(5) -> 15 repItems_0(6) -> 15 repItems_0(7) -> 15 repItems_0(8) -> 15 repItems_0(9) -> 15 repItems_0(10) -> 15 repItems_0(11) -> 15 repItems_0(13) -> 15 repItems_0(16) -> 15 repItems_1(20) -> 2 repItems_1(20) -> 20 s_0(1) -> 2 s_0(1) -> 16 s_0(1) -> 20 s_0(5) -> 2 s_0(5) -> 16 s_0(5) -> 20 s_0(6) -> 2 s_0(6) -> 16 s_0(6) -> 20 s_0(7) -> 2 s_0(7) -> 16 s_0(7) -> 20 s_0(8) -> 2 s_0(8) -> 16 s_0(8) -> 20 s_0(9) -> 2 s_0(9) -> 16 s_0(9) -> 20 s_0(10) -> 2 s_0(10) -> 16 s_0(10) -> 20 s_0(11) -> 2 s_0(11) -> 16 s_0(11) -> 20 s_0(13) -> 2 s_0(13) -> 16 s_0(13) -> 20 s_0(16) -> 2 s_0(16) -> 16 s_0(16) -> 20 tail_0(1) -> 17 tail_0(5) -> 17 tail_0(6) -> 17 tail_0(7) -> 17 tail_0(8) -> 17 tail_0(9) -> 17 tail_0(10) -> 17 tail_0(11) -> 17 tail_0(13) -> 17 tail_0(16) -> 17 take_0(1,1) -> 18 take_0(1,5) -> 18 take_0(1,6) -> 18 take_0(1,7) -> 18 take_0(1,8) -> 18 take_0(1,9) -> 18 take_0(1,10) -> 18 take_0(1,11) -> 18 take_0(1,13) -> 18 take_0(1,16) -> 18 take_0(5,1) -> 18 take_0(5,5) -> 18 take_0(5,6) -> 18 take_0(5,7) -> 18 take_0(5,8) -> 18 take_0(5,9) -> 18 take_0(5,10) -> 18 take_0(5,11) -> 18 take_0(5,13) -> 18 take_0(5,16) -> 18 take_0(6,1) -> 18 take_0(6,5) -> 18 take_0(6,6) -> 18 take_0(6,7) -> 18 take_0(6,8) -> 18 take_0(6,9) -> 18 take_0(6,10) -> 18 take_0(6,11) -> 18 take_0(6,13) -> 18 take_0(6,16) -> 18 take_0(7,1) -> 18 take_0(7,5) -> 18 take_0(7,6) -> 18 take_0(7,7) -> 18 take_0(7,8) -> 18 take_0(7,9) -> 18 take_0(7,10) -> 18 take_0(7,11) -> 18 take_0(7,13) -> 18 take_0(7,16) -> 18 take_0(8,1) -> 18 take_0(8,5) -> 18 take_0(8,6) -> 18 take_0(8,7) -> 18 take_0(8,8) -> 18 take_0(8,9) -> 18 take_0(8,10) -> 18 take_0(8,11) -> 18 take_0(8,13) -> 18 take_0(8,16) -> 18 take_0(9,1) -> 18 take_0(9,5) -> 18 take_0(9,6) -> 18 take_0(9,7) -> 18 take_0(9,8) -> 18 take_0(9,9) -> 18 take_0(9,10) -> 18 take_0(9,11) -> 18 take_0(9,13) -> 18 take_0(9,16) -> 18 take_0(10,1) -> 18 take_0(10,5) -> 18 take_0(10,6) -> 18 take_0(10,7) -> 18 take_0(10,8) -> 18 take_0(10,9) -> 18 take_0(10,10) -> 18 take_0(10,11) -> 18 take_0(10,13) -> 18 take_0(10,16) -> 18 take_0(11,1) -> 18 take_0(11,5) -> 18 take_0(11,6) -> 18 take_0(11,7) -> 18 take_0(11,8) -> 18 take_0(11,9) -> 18 take_0(11,10) -> 18 take_0(11,11) -> 18 take_0(11,13) -> 18 take_0(11,16) -> 18 take_0(13,1) -> 18 take_0(13,5) -> 18 take_0(13,6) -> 18 take_0(13,7) -> 18 take_0(13,8) -> 18 take_0(13,9) -> 18 take_0(13,10) -> 18 take_0(13,11) -> 18 take_0(13,13) -> 18 take_0(13,16) -> 18 take_0(16,1) -> 18 take_0(16,5) -> 18 take_0(16,6) -> 18 take_0(16,7) -> 18 take_0(16,8) -> 18 take_0(16,9) -> 18 take_0(16,10) -> 18 take_0(16,11) -> 18 take_0(16,13) -> 18 take_0(16,16) -> 18 take_1(20,20) -> 2 take_1(20,20) -> 20 zip_0(1,1) -> 19 zip_0(1,5) -> 19 zip_0(1,6) -> 19 zip_0(1,7) -> 19 zip_0(1,8) -> 19 zip_0(1,9) -> 19 zip_0(1,10) -> 19 zip_0(1,11) -> 19 zip_0(1,13) -> 19 zip_0(1,16) -> 19 zip_0(5,1) -> 19 zip_0(5,5) -> 19 zip_0(5,6) -> 19 zip_0(5,7) -> 19 zip_0(5,8) -> 19 zip_0(5,9) -> 19 zip_0(5,10) -> 19 zip_0(5,11) -> 19 zip_0(5,13) -> 19 zip_0(5,16) -> 19 zip_0(6,1) -> 19 zip_0(6,5) -> 19 zip_0(6,6) -> 19 zip_0(6,7) -> 19 zip_0(6,8) -> 19 zip_0(6,9) -> 19 zip_0(6,10) -> 19 zip_0(6,11) -> 19 zip_0(6,13) -> 19 zip_0(6,16) -> 19 zip_0(7,1) -> 19 zip_0(7,5) -> 19 zip_0(7,6) -> 19 zip_0(7,7) -> 19 zip_0(7,8) -> 19 zip_0(7,9) -> 19 zip_0(7,10) -> 19 zip_0(7,11) -> 19 zip_0(7,13) -> 19 zip_0(7,16) -> 19 zip_0(8,1) -> 19 zip_0(8,5) -> 19 zip_0(8,6) -> 19 zip_0(8,7) -> 19 zip_0(8,8) -> 19 zip_0(8,9) -> 19 zip_0(8,10) -> 19 zip_0(8,11) -> 19 zip_0(8,13) -> 19 zip_0(8,16) -> 19 zip_0(9,1) -> 19 zip_0(9,5) -> 19 zip_0(9,6) -> 19 zip_0(9,7) -> 19 zip_0(9,8) -> 19 zip_0(9,9) -> 19 zip_0(9,10) -> 19 zip_0(9,11) -> 19 zip_0(9,13) -> 19 zip_0(9,16) -> 19 zip_0(10,1) -> 19 zip_0(10,5) -> 19 zip_0(10,6) -> 19 zip_0(10,7) -> 19 zip_0(10,8) -> 19 zip_0(10,9) -> 19 zip_0(10,10) -> 19 zip_0(10,11) -> 19 zip_0(10,13) -> 19 zip_0(10,16) -> 19 zip_0(11,1) -> 19 zip_0(11,5) -> 19 zip_0(11,6) -> 19 zip_0(11,7) -> 19 zip_0(11,8) -> 19 zip_0(11,9) -> 19 zip_0(11,10) -> 19 zip_0(11,11) -> 19 zip_0(11,13) -> 19 zip_0(11,16) -> 19 zip_0(13,1) -> 19 zip_0(13,5) -> 19 zip_0(13,6) -> 19 zip_0(13,7) -> 19 zip_0(13,8) -> 19 zip_0(13,9) -> 19 zip_0(13,10) -> 19 zip_0(13,11) -> 19 zip_0(13,13) -> 19 zip_0(13,16) -> 19 zip_0(16,1) -> 19 zip_0(16,5) -> 19 zip_0(16,6) -> 19 zip_0(16,7) -> 19 zip_0(16,8) -> 19 zip_0(16,9) -> 19 zip_0(16,10) -> 19 zip_0(16,11) -> 19 zip_0(16,13) -> 19 zip_0(16,16) -> 19 zip_1(20,20) -> 2 zip_1(20,20) -> 20 1 -> 2 1 -> 20 5 -> 2 5 -> 20 6 -> 2 6 -> 20 7 -> 2 7 -> 20 8 -> 2 8 -> 20 9 -> 2 9 -> 20 10 -> 2 10 -> 20 11 -> 2 11 -> 20 13 -> 2 13 -> 20 16 -> 2 16 -> 20 ** Step 1.b:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: activate(X) -> X activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__incr(X)) -> incr(activate(X)) activate(n__oddNs()) -> oddNs() activate(n__repItems(X)) -> repItems(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zip(X1,X2)) -> zip(activate(X1),activate(X2)) cons(X1,X2) -> n__cons(X1,X2) incr(X) -> n__incr(X) oddNs() -> incr(pairNs()) oddNs() -> n__oddNs() pairNs() -> cons(0(),n__incr(n__oddNs())) repItems(X) -> n__repItems(X) repItems(nil()) -> nil() take(X1,X2) -> n__take(X1,X2) take(0(),XS) -> nil() zip(X,nil()) -> nil() zip(X1,X2) -> n__zip(X1,X2) zip(nil(),XS) -> nil() - Signature: {activate/1,cons/2,incr/1,oddNs/0,pairNs/0,repItems/1,tail/1,take/2,zip/2} / {0/0,n__cons/2,n__incr/1 ,n__oddNs/0,n__repItems/1,n__take/2,n__zip/2,nil/0,pair/2,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,cons,incr,oddNs,pairNs,repItems,tail,take ,zip} and constructors {0,n__cons,n__incr,n__oddNs,n__repItems,n__take,n__zip,nil,pair,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))