* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            active(cons(X1,X2)) -> cons(active(X1),X2)
            active(incr(X)) -> incr(active(X))
            active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS)))
            active(oddNs()) -> mark(incr(pairNs()))
            active(pair(X1,X2)) -> pair(X1,active(X2))
            active(pair(X1,X2)) -> pair(active(X1),X2)
            active(pairNs()) -> mark(cons(0(),incr(oddNs())))
            active(repItems(X)) -> repItems(active(X))
            active(repItems(cons(X,XS))) -> mark(cons(X,cons(X,repItems(XS))))
            active(repItems(nil())) -> mark(nil())
            active(s(X)) -> s(active(X))
            active(tail(X)) -> tail(active(X))
            active(tail(cons(X,XS))) -> mark(XS)
            active(take(X1,X2)) -> take(X1,active(X2))
            active(take(X1,X2)) -> take(active(X1),X2)
            active(take(0(),XS)) -> mark(nil())
            active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS)))
            active(zip(X,nil())) -> mark(nil())
            active(zip(X1,X2)) -> zip(X1,active(X2))
            active(zip(X1,X2)) -> zip(active(X1),X2)
            active(zip(cons(X,XS),cons(Y,YS))) -> mark(cons(pair(X,Y),zip(XS,YS)))
            active(zip(nil(),XS)) -> mark(nil())
            cons(mark(X1),X2) -> mark(cons(X1,X2))
            cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
            incr(mark(X)) -> mark(incr(X))
            incr(ok(X)) -> ok(incr(X))
            pair(X1,mark(X2)) -> mark(pair(X1,X2))
            pair(mark(X1),X2) -> mark(pair(X1,X2))
            pair(ok(X1),ok(X2)) -> ok(pair(X1,X2))
            proper(0()) -> ok(0())
            proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
            proper(incr(X)) -> incr(proper(X))
            proper(nil()) -> ok(nil())
            proper(oddNs()) -> ok(oddNs())
            proper(pair(X1,X2)) -> pair(proper(X1),proper(X2))
            proper(pairNs()) -> ok(pairNs())
            proper(repItems(X)) -> repItems(proper(X))
            proper(s(X)) -> s(proper(X))
            proper(tail(X)) -> tail(proper(X))
            proper(take(X1,X2)) -> take(proper(X1),proper(X2))
            proper(zip(X1,X2)) -> zip(proper(X1),proper(X2))
            repItems(mark(X)) -> mark(repItems(X))
            repItems(ok(X)) -> ok(repItems(X))
            s(mark(X)) -> mark(s(X))
            s(ok(X)) -> ok(s(X))
            tail(mark(X)) -> mark(tail(X))
            tail(ok(X)) -> ok(tail(X))
            take(X1,mark(X2)) -> mark(take(X1,X2))
            take(mark(X1),X2) -> mark(take(X1,X2))
            take(ok(X1),ok(X2)) -> ok(take(X1,X2))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
            zip(X1,mark(X2)) -> mark(zip(X1,X2))
            zip(mark(X1),X2) -> mark(zip(X1,X2))
            zip(ok(X1),ok(X2)) -> ok(zip(X1,X2))
        - Signature:
            {active/1,cons/2,incr/1,pair/2,proper/1,repItems/1,s/1,tail/1,take/2,top/1,zip/2} / {0/0,mark/1,nil/0
            ,oddNs/0,ok/1,pairNs/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active,cons,incr,pair,proper,repItems,s,tail,take,top
            ,zip} and constructors {0,mark,nil,oddNs,ok,pairNs}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            active(cons(X1,X2)) -> cons(active(X1),X2)
            active(incr(X)) -> incr(active(X))
            active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS)))
            active(oddNs()) -> mark(incr(pairNs()))
            active(pair(X1,X2)) -> pair(X1,active(X2))
            active(pair(X1,X2)) -> pair(active(X1),X2)
            active(pairNs()) -> mark(cons(0(),incr(oddNs())))
            active(repItems(X)) -> repItems(active(X))
            active(repItems(cons(X,XS))) -> mark(cons(X,cons(X,repItems(XS))))
            active(repItems(nil())) -> mark(nil())
            active(s(X)) -> s(active(X))
            active(tail(X)) -> tail(active(X))
            active(tail(cons(X,XS))) -> mark(XS)
            active(take(X1,X2)) -> take(X1,active(X2))
            active(take(X1,X2)) -> take(active(X1),X2)
            active(take(0(),XS)) -> mark(nil())
            active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS)))
            active(zip(X,nil())) -> mark(nil())
            active(zip(X1,X2)) -> zip(X1,active(X2))
            active(zip(X1,X2)) -> zip(active(X1),X2)
            active(zip(cons(X,XS),cons(Y,YS))) -> mark(cons(pair(X,Y),zip(XS,YS)))
            active(zip(nil(),XS)) -> mark(nil())
            cons(mark(X1),X2) -> mark(cons(X1,X2))
            cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
            incr(mark(X)) -> mark(incr(X))
            incr(ok(X)) -> ok(incr(X))
            pair(X1,mark(X2)) -> mark(pair(X1,X2))
            pair(mark(X1),X2) -> mark(pair(X1,X2))
            pair(ok(X1),ok(X2)) -> ok(pair(X1,X2))
            proper(0()) -> ok(0())
            proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
            proper(incr(X)) -> incr(proper(X))
            proper(nil()) -> ok(nil())
            proper(oddNs()) -> ok(oddNs())
            proper(pair(X1,X2)) -> pair(proper(X1),proper(X2))
            proper(pairNs()) -> ok(pairNs())
            proper(repItems(X)) -> repItems(proper(X))
            proper(s(X)) -> s(proper(X))
            proper(tail(X)) -> tail(proper(X))
            proper(take(X1,X2)) -> take(proper(X1),proper(X2))
            proper(zip(X1,X2)) -> zip(proper(X1),proper(X2))
            repItems(mark(X)) -> mark(repItems(X))
            repItems(ok(X)) -> ok(repItems(X))
            s(mark(X)) -> mark(s(X))
            s(ok(X)) -> ok(s(X))
            tail(mark(X)) -> mark(tail(X))
            tail(ok(X)) -> ok(tail(X))
            take(X1,mark(X2)) -> mark(take(X1,X2))
            take(mark(X1),X2) -> mark(take(X1,X2))
            take(ok(X1),ok(X2)) -> ok(take(X1,X2))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
            zip(X1,mark(X2)) -> mark(zip(X1,X2))
            zip(mark(X1),X2) -> mark(zip(X1,X2))
            zip(ok(X1),ok(X2)) -> ok(zip(X1,X2))
        - Signature:
            {active/1,cons/2,incr/1,pair/2,proper/1,repItems/1,s/1,tail/1,take/2,top/1,zip/2} / {0/0,mark/1,nil/0
            ,oddNs/0,ok/1,pairNs/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active,cons,incr,pair,proper,repItems,s,tail,take,top
            ,zip} and constructors {0,mark,nil,oddNs,ok,pairNs}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          cons(x,y){x -> mark(x)} =
            cons(mark(x),y) ->^+ mark(cons(x,y))
              = C[cons(x,y) = cons(x,y){}]

WORST_CASE(Omega(n^1),?)