* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__f(X)) -> f(X) f(X) -> cons(X,n__f(g(X))) f(X) -> n__f(X) g(0()) -> s(0()) g(s(X)) -> s(s(g(X))) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,f/1,g/1,sel/2} / {0/0,cons/2,n__f/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,f,g,sel} and constructors {0,cons,n__f,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__f(X)) -> f(X) f(X) -> cons(X,n__f(g(X))) f(X) -> n__f(X) g(0()) -> s(0()) g(s(X)) -> s(s(g(X))) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,f/1,g/1,sel/2} / {0/0,cons/2,n__f/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,f,g,sel} and constructors {0,cons,n__f,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: g(x){x -> s(x)} = g(s(x)) ->^+ s(s(g(x))) = C[g(x) = g(x){}] WORST_CASE(Omega(n^1),?)