* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__f(X)) -> f(activate(X))
            activate(n__g(X)) -> g(activate(X))
            f(X) -> cons(X,n__f(n__g(X)))
            f(X) -> n__f(X)
            g(X) -> n__g(X)
            g(0()) -> s(0())
            g(s(X)) -> s(s(g(X)))
            sel(0(),cons(X,Y)) -> X
            sel(s(X),cons(Y,Z)) -> sel(X,activate(Z))
        - Signature:
            {activate/1,f/1,g/1,sel/2} / {0/0,cons/2,n__f/1,n__g/1,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,f,g,sel} and constructors {0,cons,n__f,n__g,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__f(X)) -> f(activate(X))
            activate(n__g(X)) -> g(activate(X))
            f(X) -> cons(X,n__f(n__g(X)))
            f(X) -> n__f(X)
            g(X) -> n__g(X)
            g(0()) -> s(0())
            g(s(X)) -> s(s(g(X)))
            sel(0(),cons(X,Y)) -> X
            sel(s(X),cons(Y,Z)) -> sel(X,activate(Z))
        - Signature:
            {activate/1,f/1,g/1,sel/2} / {0/0,cons/2,n__f/1,n__g/1,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,f,g,sel} and constructors {0,cons,n__f,n__g,s}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__f(x)} =
            activate(n__f(x)) ->^+ f(activate(x))
              = C[activate(x) = activate(x){}]

WORST_CASE(Omega(n^1),?)