* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: 0() -> n__0() activate(X) -> X activate(n__0()) -> 0() activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__length(X)) -> length(activate(X)) activate(n__nil()) -> nil() activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zeros()) -> zeros() and(tt(),T) -> T cons(X1,X2) -> n__cons(X1,X2) isNat(n__0()) -> tt() isNat(n__length(L)) -> isNatList(activate(L)) isNat(n__s(N)) -> isNat(activate(N)) isNatIList(IL) -> isNatList(activate(IL)) isNatIList(n__cons(N,IL)) -> and(isNat(activate(N)),isNatIList(activate(IL))) isNatIList(n__zeros()) -> tt() isNatList(n__cons(N,L)) -> and(isNat(activate(N)),isNatList(activate(L))) isNatList(n__nil()) -> tt() isNatList(n__take(N,IL)) -> and(isNat(activate(N)),isNatIList(activate(IL))) length(X) -> n__length(X) length(cons(N,L)) -> uLength(and(isNat(N),isNatList(activate(L))),activate(L)) nil() -> n__nil() s(X) -> n__s(X) take(X1,X2) -> n__take(X1,X2) take(0(),IL) -> uTake1(isNatIList(IL)) take(s(M),cons(N,IL)) -> uTake2(and(isNat(M),and(isNat(N),isNatIList(activate(IL)))),M,N,activate(IL)) uLength(tt(),L) -> s(length(activate(L))) uTake1(tt()) -> nil() uTake2(tt(),M,N,IL) -> cons(activate(N),n__take(activate(M),activate(IL))) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {0/0,activate/1,and/2,cons/2,isNat/1,isNatIList/1,isNatList/1,length/1,nil/0,s/1,take/2,uLength/2,uTake1/1 ,uTake2/4,zeros/0} / {n__0/0,n__cons/2,n__length/1,n__nil/0,n__s/1,n__take/2,n__zeros/0,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {0,activate,and,cons,isNat,isNatIList,isNatList,length,nil ,s,take,uLength,uTake1,uTake2,zeros} and constructors {n__0,n__cons,n__length,n__nil,n__s,n__take,n__zeros ,tt} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: 0() -> n__0() activate(X) -> X activate(n__0()) -> 0() activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__length(X)) -> length(activate(X)) activate(n__nil()) -> nil() activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zeros()) -> zeros() and(tt(),T) -> T cons(X1,X2) -> n__cons(X1,X2) isNat(n__0()) -> tt() isNat(n__length(L)) -> isNatList(activate(L)) isNat(n__s(N)) -> isNat(activate(N)) isNatIList(IL) -> isNatList(activate(IL)) isNatIList(n__cons(N,IL)) -> and(isNat(activate(N)),isNatIList(activate(IL))) isNatIList(n__zeros()) -> tt() isNatList(n__cons(N,L)) -> and(isNat(activate(N)),isNatList(activate(L))) isNatList(n__nil()) -> tt() isNatList(n__take(N,IL)) -> and(isNat(activate(N)),isNatIList(activate(IL))) length(X) -> n__length(X) length(cons(N,L)) -> uLength(and(isNat(N),isNatList(activate(L))),activate(L)) nil() -> n__nil() s(X) -> n__s(X) take(X1,X2) -> n__take(X1,X2) take(0(),IL) -> uTake1(isNatIList(IL)) take(s(M),cons(N,IL)) -> uTake2(and(isNat(M),and(isNat(N),isNatIList(activate(IL)))),M,N,activate(IL)) uLength(tt(),L) -> s(length(activate(L))) uTake1(tt()) -> nil() uTake2(tt(),M,N,IL) -> cons(activate(N),n__take(activate(M),activate(IL))) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {0/0,activate/1,and/2,cons/2,isNat/1,isNatIList/1,isNatList/1,length/1,nil/0,s/1,take/2,uLength/2,uTake1/1 ,uTake2/4,zeros/0} / {n__0/0,n__cons/2,n__length/1,n__nil/0,n__s/1,n__take/2,n__zeros/0,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {0,activate,and,cons,isNat,isNatIList,isNatList,length,nil ,s,take,uLength,uTake1,uTake2,zeros} and constructors {n__0,n__cons,n__length,n__nil,n__s,n__take,n__zeros ,tt} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: activate(x){x -> n__cons(x,y)} = activate(n__cons(x,y)) ->^+ cons(activate(x),y) = C[activate(x) = activate(x){}] WORST_CASE(Omega(n^1),?)