* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
0() -> n__0()
activate(X) -> X
activate(n__0()) -> 0()
activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
activate(n__length(X)) -> length(activate(X))
activate(n__nil()) -> nil()
activate(n__s(X)) -> s(activate(X))
activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
activate(n__zeros()) -> zeros()
and(tt(),T) -> T
cons(X1,X2) -> n__cons(X1,X2)
isNat(n__0()) -> tt()
isNat(n__length(L)) -> isNatList(activate(L))
isNat(n__s(N)) -> isNat(activate(N))
isNatIList(IL) -> isNatList(activate(IL))
isNatIList(n__cons(N,IL)) -> and(isNat(activate(N)),isNatIList(activate(IL)))
isNatIList(n__zeros()) -> tt()
isNatList(n__cons(N,L)) -> and(isNat(activate(N)),isNatList(activate(L)))
isNatList(n__nil()) -> tt()
isNatList(n__take(N,IL)) -> and(isNat(activate(N)),isNatIList(activate(IL)))
length(X) -> n__length(X)
length(cons(N,L)) -> uLength(and(isNat(N),isNatList(activate(L))),activate(L))
nil() -> n__nil()
s(X) -> n__s(X)
take(X1,X2) -> n__take(X1,X2)
take(0(),IL) -> uTake1(isNatIList(IL))
take(s(M),cons(N,IL)) -> uTake2(and(isNat(M),and(isNat(N),isNatIList(activate(IL)))),M,N,activate(IL))
uLength(tt(),L) -> s(length(activate(L)))
uTake1(tt()) -> nil()
uTake2(tt(),M,N,IL) -> cons(activate(N),n__take(activate(M),activate(IL)))
zeros() -> cons(0(),n__zeros())
zeros() -> n__zeros()
- Signature:
{0/0,activate/1,and/2,cons/2,isNat/1,isNatIList/1,isNatList/1,length/1,nil/0,s/1,take/2,uLength/2,uTake1/1
,uTake2/4,zeros/0} / {n__0/0,n__cons/2,n__length/1,n__nil/0,n__s/1,n__take/2,n__zeros/0,tt/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {0,activate,and,cons,isNat,isNatIList,isNatList,length,nil
,s,take,uLength,uTake1,uTake2,zeros} and constructors {n__0,n__cons,n__length,n__nil,n__s,n__take,n__zeros
,tt}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
0() -> n__0()
activate(X) -> X
activate(n__0()) -> 0()
activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
activate(n__length(X)) -> length(activate(X))
activate(n__nil()) -> nil()
activate(n__s(X)) -> s(activate(X))
activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
activate(n__zeros()) -> zeros()
and(tt(),T) -> T
cons(X1,X2) -> n__cons(X1,X2)
isNat(n__0()) -> tt()
isNat(n__length(L)) -> isNatList(activate(L))
isNat(n__s(N)) -> isNat(activate(N))
isNatIList(IL) -> isNatList(activate(IL))
isNatIList(n__cons(N,IL)) -> and(isNat(activate(N)),isNatIList(activate(IL)))
isNatIList(n__zeros()) -> tt()
isNatList(n__cons(N,L)) -> and(isNat(activate(N)),isNatList(activate(L)))
isNatList(n__nil()) -> tt()
isNatList(n__take(N,IL)) -> and(isNat(activate(N)),isNatIList(activate(IL)))
length(X) -> n__length(X)
length(cons(N,L)) -> uLength(and(isNat(N),isNatList(activate(L))),activate(L))
nil() -> n__nil()
s(X) -> n__s(X)
take(X1,X2) -> n__take(X1,X2)
take(0(),IL) -> uTake1(isNatIList(IL))
take(s(M),cons(N,IL)) -> uTake2(and(isNat(M),and(isNat(N),isNatIList(activate(IL)))),M,N,activate(IL))
uLength(tt(),L) -> s(length(activate(L)))
uTake1(tt()) -> nil()
uTake2(tt(),M,N,IL) -> cons(activate(N),n__take(activate(M),activate(IL)))
zeros() -> cons(0(),n__zeros())
zeros() -> n__zeros()
- Signature:
{0/0,activate/1,and/2,cons/2,isNat/1,isNatIList/1,isNatList/1,length/1,nil/0,s/1,take/2,uLength/2,uTake1/1
,uTake2/4,zeros/0} / {n__0/0,n__cons/2,n__length/1,n__nil/0,n__s/1,n__take/2,n__zeros/0,tt/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {0,activate,and,cons,isNat,isNatIList,isNatList,length,nil
,s,take,uLength,uTake1,uTake2,zeros} and constructors {n__0,n__cons,n__length,n__nil,n__s,n__take,n__zeros
,tt}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
activate(x){x -> n__cons(x,y)} =
activate(n__cons(x,y)) ->^+ cons(activate(x),y)
= C[activate(x) = activate(x){}]
WORST_CASE(Omega(n^1),?)