* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: active(and(X1,X2)) -> and(X1,active(X2)) active(and(X1,X2)) -> and(active(X1),X2) active(and(tt(),T)) -> mark(T) active(cons(X1,X2)) -> cons(active(X1),X2) active(isNat(0())) -> mark(tt()) active(isNat(length(L))) -> mark(isNatList(L)) active(isNat(s(N))) -> mark(isNat(N)) active(isNatIList(IL)) -> mark(isNatList(IL)) active(isNatIList(cons(N,IL))) -> mark(and(isNat(N),isNatIList(IL))) active(isNatIList(zeros())) -> mark(tt()) active(isNatList(cons(N,L))) -> mark(and(isNat(N),isNatList(L))) active(isNatList(nil())) -> mark(tt()) active(isNatList(take(N,IL))) -> mark(and(isNat(N),isNatIList(IL))) active(length(X)) -> length(active(X)) active(length(cons(N,L))) -> mark(uLength(and(isNat(N),isNatList(L)),L)) active(s(X)) -> s(active(X)) active(take(X1,X2)) -> take(X1,active(X2)) active(take(X1,X2)) -> take(active(X1),X2) active(take(0(),IL)) -> mark(uTake1(isNatIList(IL))) active(take(s(M),cons(N,IL))) -> mark(uTake2(and(isNat(M),and(isNat(N),isNatIList(IL))),M,N,IL)) active(uLength(X1,X2)) -> uLength(active(X1),X2) active(uLength(tt(),L)) -> mark(s(length(L))) active(uTake1(X)) -> uTake1(active(X)) active(uTake1(tt())) -> mark(nil()) active(uTake2(X1,X2,X3,X4)) -> uTake2(active(X1),X2,X3,X4) active(uTake2(tt(),M,N,IL)) -> mark(cons(N,take(M,IL))) active(zeros()) -> mark(cons(0(),zeros())) and(X1,mark(X2)) -> mark(and(X1,X2)) and(mark(X1),X2) -> mark(and(X1,X2)) and(ok(X1),ok(X2)) -> ok(and(X1,X2)) cons(mark(X1),X2) -> mark(cons(X1,X2)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) isNat(ok(X)) -> ok(isNat(X)) isNatIList(ok(X)) -> ok(isNatIList(X)) isNatList(ok(X)) -> ok(isNatList(X)) length(mark(X)) -> mark(length(X)) length(ok(X)) -> ok(length(X)) proper(0()) -> ok(0()) proper(and(X1,X2)) -> and(proper(X1),proper(X2)) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(isNat(X)) -> isNat(proper(X)) proper(isNatIList(X)) -> isNatIList(proper(X)) proper(isNatList(X)) -> isNatList(proper(X)) proper(length(X)) -> length(proper(X)) proper(nil()) -> ok(nil()) proper(s(X)) -> s(proper(X)) proper(take(X1,X2)) -> take(proper(X1),proper(X2)) proper(tt()) -> ok(tt()) proper(uLength(X1,X2)) -> uLength(proper(X1),proper(X2)) proper(uTake1(X)) -> uTake1(proper(X)) proper(uTake2(X1,X2,X3,X4)) -> uTake2(proper(X1),proper(X2),proper(X3),proper(X4)) proper(zeros()) -> ok(zeros()) s(mark(X)) -> mark(s(X)) s(ok(X)) -> ok(s(X)) take(X1,mark(X2)) -> mark(take(X1,X2)) take(mark(X1),X2) -> mark(take(X1,X2)) take(ok(X1),ok(X2)) -> ok(take(X1,X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) uLength(mark(X1),X2) -> mark(uLength(X1,X2)) uLength(ok(X1),ok(X2)) -> ok(uLength(X1,X2)) uTake1(mark(X)) -> mark(uTake1(X)) uTake1(ok(X)) -> ok(uTake1(X)) uTake2(mark(X1),X2,X3,X4) -> mark(uTake2(X1,X2,X3,X4)) uTake2(ok(X1),ok(X2),ok(X3),ok(X4)) -> ok(uTake2(X1,X2,X3,X4)) - Signature: {active/1,and/2,cons/2,isNat/1,isNatIList/1,isNatList/1,length/1,proper/1,s/1,take/2,top/1,uLength/2 ,uTake1/1,uTake2/4} / {0/0,mark/1,nil/0,ok/1,tt/0,zeros/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,and,cons,isNat,isNatIList,isNatList,length,proper ,s,take,top,uLength,uTake1,uTake2} and constructors {0,mark,nil,ok,tt,zeros} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: active(and(X1,X2)) -> and(X1,active(X2)) active(and(X1,X2)) -> and(active(X1),X2) active(and(tt(),T)) -> mark(T) active(cons(X1,X2)) -> cons(active(X1),X2) active(isNat(0())) -> mark(tt()) active(isNat(length(L))) -> mark(isNatList(L)) active(isNat(s(N))) -> mark(isNat(N)) active(isNatIList(IL)) -> mark(isNatList(IL)) active(isNatIList(cons(N,IL))) -> mark(and(isNat(N),isNatIList(IL))) active(isNatIList(zeros())) -> mark(tt()) active(isNatList(cons(N,L))) -> mark(and(isNat(N),isNatList(L))) active(isNatList(nil())) -> mark(tt()) active(isNatList(take(N,IL))) -> mark(and(isNat(N),isNatIList(IL))) active(length(X)) -> length(active(X)) active(length(cons(N,L))) -> mark(uLength(and(isNat(N),isNatList(L)),L)) active(s(X)) -> s(active(X)) active(take(X1,X2)) -> take(X1,active(X2)) active(take(X1,X2)) -> take(active(X1),X2) active(take(0(),IL)) -> mark(uTake1(isNatIList(IL))) active(take(s(M),cons(N,IL))) -> mark(uTake2(and(isNat(M),and(isNat(N),isNatIList(IL))),M,N,IL)) active(uLength(X1,X2)) -> uLength(active(X1),X2) active(uLength(tt(),L)) -> mark(s(length(L))) active(uTake1(X)) -> uTake1(active(X)) active(uTake1(tt())) -> mark(nil()) active(uTake2(X1,X2,X3,X4)) -> uTake2(active(X1),X2,X3,X4) active(uTake2(tt(),M,N,IL)) -> mark(cons(N,take(M,IL))) active(zeros()) -> mark(cons(0(),zeros())) and(X1,mark(X2)) -> mark(and(X1,X2)) and(mark(X1),X2) -> mark(and(X1,X2)) and(ok(X1),ok(X2)) -> ok(and(X1,X2)) cons(mark(X1),X2) -> mark(cons(X1,X2)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) isNat(ok(X)) -> ok(isNat(X)) isNatIList(ok(X)) -> ok(isNatIList(X)) isNatList(ok(X)) -> ok(isNatList(X)) length(mark(X)) -> mark(length(X)) length(ok(X)) -> ok(length(X)) proper(0()) -> ok(0()) proper(and(X1,X2)) -> and(proper(X1),proper(X2)) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(isNat(X)) -> isNat(proper(X)) proper(isNatIList(X)) -> isNatIList(proper(X)) proper(isNatList(X)) -> isNatList(proper(X)) proper(length(X)) -> length(proper(X)) proper(nil()) -> ok(nil()) proper(s(X)) -> s(proper(X)) proper(take(X1,X2)) -> take(proper(X1),proper(X2)) proper(tt()) -> ok(tt()) proper(uLength(X1,X2)) -> uLength(proper(X1),proper(X2)) proper(uTake1(X)) -> uTake1(proper(X)) proper(uTake2(X1,X2,X3,X4)) -> uTake2(proper(X1),proper(X2),proper(X3),proper(X4)) proper(zeros()) -> ok(zeros()) s(mark(X)) -> mark(s(X)) s(ok(X)) -> ok(s(X)) take(X1,mark(X2)) -> mark(take(X1,X2)) take(mark(X1),X2) -> mark(take(X1,X2)) take(ok(X1),ok(X2)) -> ok(take(X1,X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) uLength(mark(X1),X2) -> mark(uLength(X1,X2)) uLength(ok(X1),ok(X2)) -> ok(uLength(X1,X2)) uTake1(mark(X)) -> mark(uTake1(X)) uTake1(ok(X)) -> ok(uTake1(X)) uTake2(mark(X1),X2,X3,X4) -> mark(uTake2(X1,X2,X3,X4)) uTake2(ok(X1),ok(X2),ok(X3),ok(X4)) -> ok(uTake2(X1,X2,X3,X4)) - Signature: {active/1,and/2,cons/2,isNat/1,isNatIList/1,isNatList/1,length/1,proper/1,s/1,take/2,top/1,uLength/2 ,uTake1/1,uTake2/4} / {0/0,mark/1,nil/0,ok/1,tt/0,zeros/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,and,cons,isNat,isNatIList,isNatList,length,proper ,s,take,top,uLength,uTake1,uTake2} and constructors {0,mark,nil,ok,tt,zeros} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: and(x,y){y -> mark(y)} = and(x,mark(y)) ->^+ mark(and(x,y)) = C[and(x,y) = and(x,y){}] WORST_CASE(Omega(n^1),?)