* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1} / {mark/1,ok/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active,f,g,proper,top} and constructors {mark,ok}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1} / {mark/1,ok/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active,f,g,proper,top} and constructors {mark,ok}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          f(x,y){x -> mark(x)} =
            f(mark(x),y) ->^+ mark(f(x,y))
              = C[f(x,y) = f(x,y){}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1} / {mark/1,ok/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active,f,g,proper,top} and constructors {mark,ok}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
          active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
          active#(g(X)) -> c_3(g#(active(X)),active#(X))
          f#(mark(X1),X2) -> c_4(f#(X1,X2))
          f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
          g#(mark(X)) -> c_6(g#(X))
          g#(ok(X)) -> c_7(g#(X))
          proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
          proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
          top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
          top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:2: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
            active#(g(X)) -> c_3(g#(active(X)),active#(X))
            f#(mark(X1),X2) -> c_4(f#(X1,X2))
            f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
            g#(mark(X)) -> c_6(g#(X))
            g#(ok(X)) -> c_7(g#(X))
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          active(f(X1,X2)) -> f(active(X1),X2)
          active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
          active(g(X)) -> g(active(X))
          f(mark(X1),X2) -> mark(f(X1,X2))
          f(ok(X1),ok(X2)) -> ok(f(X1,X2))
          g(mark(X)) -> mark(g(X))
          g(ok(X)) -> ok(g(X))
          proper(f(X1,X2)) -> f(proper(X1),proper(X2))
          proper(g(X)) -> g(proper(X))
          active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
          active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
          active#(g(X)) -> c_3(g#(active(X)),active#(X))
          f#(mark(X1),X2) -> c_4(f#(X1,X2))
          f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
          g#(mark(X)) -> c_6(g#(X))
          g#(ok(X)) -> c_7(g#(X))
          proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
          proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
          top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
          top#(ok(X)) -> c_11(top#(active(X)),active#(X))
** Step 1.b:3: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
            active#(g(X)) -> c_3(g#(active(X)),active#(X))
            f#(mark(X1),X2) -> c_4(f#(X1,X2))
            f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
            g#(mark(X)) -> c_6(g#(X))
            g#(ok(X)) -> c_7(g#(X))
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
              active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
              active#(g(X)) -> c_3(g#(active(X)),active#(X))
              f#(mark(X1),X2) -> c_4(f#(X1,X2))
              f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
              g#(mark(X)) -> c_6(g#(X))
              g#(ok(X)) -> c_7(g#(X))
          - Weak DPs:
              proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
              proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
              top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
              top#(ok(X)) -> c_11(top#(active(X)),active#(X))
          - Weak TRS:
              active(f(X1,X2)) -> f(active(X1),X2)
              active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
              active(g(X)) -> g(active(X))
              f(mark(X1),X2) -> mark(f(X1,X2))
              f(ok(X1),ok(X2)) -> ok(f(X1,X2))
              g(mark(X)) -> mark(g(X))
              g(ok(X)) -> ok(g(X))
              proper(f(X1,X2)) -> f(proper(X1),proper(X2))
              proper(g(X)) -> g(proper(X))
          - Signature:
              {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
              ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
        
        Problem (S)
          - Strict DPs:
              proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
              proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
              top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
              top#(ok(X)) -> c_11(top#(active(X)),active#(X))
          - Weak DPs:
              active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
              active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
              active#(g(X)) -> c_3(g#(active(X)),active#(X))
              f#(mark(X1),X2) -> c_4(f#(X1,X2))
              f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
              g#(mark(X)) -> c_6(g#(X))
              g#(ok(X)) -> c_7(g#(X))
          - Weak TRS:
              active(f(X1,X2)) -> f(active(X1),X2)
              active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
              active(g(X)) -> g(active(X))
              f(mark(X1),X2) -> mark(f(X1,X2))
              f(ok(X1),ok(X2)) -> ok(f(X1,X2))
              g(mark(X)) -> mark(g(X))
              g(ok(X)) -> ok(g(X))
              proper(f(X1,X2)) -> f(proper(X1),proper(X2))
              proper(g(X)) -> g(proper(X))
          - Signature:
              {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
              ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
*** Step 1.b:3.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
            active#(g(X)) -> c_3(g#(active(X)),active#(X))
            f#(mark(X1),X2) -> c_4(f#(X1,X2))
            f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
            g#(mark(X)) -> c_6(g#(X))
            g#(ok(X)) -> c_7(g#(X))
        - Weak DPs:
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          7: g#(ok(X)) -> c_7(g#(X))
          
        The strictly oriented rules are moved into the weak component.
**** Step 1.b:3.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
            active#(g(X)) -> c_3(g#(active(X)),active#(X))
            f#(mark(X1),X2) -> c_4(f#(X1,X2))
            f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
            g#(mark(X)) -> c_6(g#(X))
            g#(ok(X)) -> c_7(g#(X))
        - Weak DPs:
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1,3},
          uargs(c_3) = {1,2},
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1,2,3},
          uargs(c_9) = {1,2},
          uargs(c_10) = {1,2},
          uargs(c_11) = {1,2}
        
        Following symbols are considered usable:
          {active,f,g,proper,active#,f#,g#,proper#,top#}
        TcT has computed the following interpretation:
           p(active) = [0 0] x1 + [0]                      
                       [0 2]      [0]                      
                p(f) = [1 0] x1 + [0]                      
                       [0 1]      [0]                      
                p(g) = [3 0] x1 + [0]                      
                       [0 3]      [0]                      
             p(mark) = [0 0] x1 + [0]                      
                       [0 1]      [0]                      
               p(ok) = [0 2] x1 + [0]                      
                       [0 1]      [1]                      
           p(proper) = [0]                                 
                       [0]                                 
              p(top) = [1 0] x1 + [1]                      
                       [0 2]      [2]                      
          p(active#) = [0 1] x1 + [0]                      
                       [0 1]      [2]                      
               p(f#) = [0]                                 
                       [0]                                 
               p(g#) = [0 1] x1 + [0]                      
                       [0 2]      [0]                      
          p(proper#) = [0 0] x1 + [0]                      
                       [1 0]      [2]                      
             p(top#) = [2 1] x1 + [1]                      
                       [0 2]      [0]                      
              p(c_1) = [2 2] x1 + [1 0] x2 + [0]           
                       [1 2]      [0 0]      [2]           
              p(c_2) = [1 0] x1 + [1 1] x3 + [0]           
                       [0 1]      [0 1]      [1]           
              p(c_3) = [1 0] x1 + [1 0] x2 + [0]           
                       [0 0]      [3 0]      [0]           
              p(c_4) = [2 0] x1 + [0]                      
                       [0 0]      [0]                      
              p(c_5) = [1 1] x1 + [0]                      
                       [0 0]      [0]                      
              p(c_6) = [1 0] x1 + [0]                      
                       [0 1]      [0]                      
              p(c_7) = [1 0] x1 + [0]                      
                       [0 1]      [0]                      
              p(c_8) = [1 0] x1 + [1 0] x2 + [2 0] x3 + [0]
                       [2 1]      [0 0]      [0 0]      [0]
              p(c_9) = [1 0] x1 + [2 0] x2 + [0]           
                       [0 0]      [0 0]      [2]           
             p(c_10) = [1 0] x1 + [2 0] x2 + [0]           
                       [0 0]      [0 0]      [0]           
             p(c_11) = [2 0] x1 + [1 0] x2 + [0]           
                       [0 0]      [1 1]      [0]           
        
        Following rules are strictly oriented:
        g#(ok(X)) = [0 1] X + [1]
                    [0 2]     [2]
                  > [0 1] X + [0]
                    [0 2]     [0]
                  = c_7(g#(X))   
        
        
        Following rules are (at-least) weakly oriented:
         active#(f(X1,X2)) =  [0 1] X1 + [0]                                        
                              [0 1]      [2]                                        
                           >= [0 1] X1 + [0]                                        
                              [0 0]      [2]                                        
                           =  c_1(f#(active(X1),X2),active#(X1))                    
        
        active#(f(g(X),Y)) =  [0 3] X + [0]                                         
                              [0 3]     [2]                                         
                           >= [0 3] X + [0]                                         
                              [0 2]     [1]                                         
                           =  c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))                 
        
             active#(g(X)) =  [0 3] X + [0]                                         
                              [0 3]     [2]                                         
                           >= [0 3] X + [0]                                         
                              [0 3]     [0]                                         
                           =  c_3(g#(active(X)),active#(X))                         
        
           f#(mark(X1),X2) =  [0]                                                   
                              [0]                                                   
                           >= [0]                                                   
                              [0]                                                   
                           =  c_4(f#(X1,X2))                                        
        
         f#(ok(X1),ok(X2)) =  [0]                                                   
                              [0]                                                   
                           >= [0]                                                   
                              [0]                                                   
                           =  c_5(f#(X1,X2))                                        
        
               g#(mark(X)) =  [0 1] X + [0]                                         
                              [0 2]     [0]                                         
                           >= [0 1] X + [0]                                         
                              [0 2]     [0]                                         
                           =  c_6(g#(X))                                            
        
         proper#(f(X1,X2)) =  [0 0] X1 + [0]                                        
                              [1 0]      [2]                                        
                           >= [0]                                                   
                              [0]                                                   
                           =  c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
        
             proper#(g(X)) =  [0 0] X + [0]                                         
                              [3 0]     [2]                                         
                           >= [0]                                                   
                              [2]                                                   
                           =  c_9(g#(proper(X)),proper#(X))                         
        
             top#(mark(X)) =  [0 1] X + [1]                                         
                              [0 2]     [0]                                         
                           >= [1]                                                   
                              [0]                                                   
                           =  c_10(top#(proper(X)),proper#(X))                      
        
               top#(ok(X)) =  [0 5] X + [2]                                         
                              [0 2]     [2]                                         
                           >= [0 5] X + [2]                                         
                              [0 2]     [2]                                         
                           =  c_11(top#(active(X)),active#(X))                      
        
          active(f(X1,X2)) =  [0 0] X1 + [0]                                        
                              [0 2]      [0]                                        
                           >= [0 0] X1 + [0]                                        
                              [0 2]      [0]                                        
                           =  f(active(X1),X2)                                      
        
         active(f(g(X),Y)) =  [0 0] X + [0]                                         
                              [0 6]     [0]                                         
                           >= [0 0] X + [0]                                         
                              [0 1]     [0]                                         
                           =  mark(f(X,f(g(X),Y)))                                  
        
              active(g(X)) =  [0 0] X + [0]                                         
                              [0 6]     [0]                                         
                           >= [0 0] X + [0]                                         
                              [0 6]     [0]                                         
                           =  g(active(X))                                          
        
            f(mark(X1),X2) =  [0 0] X1 + [0]                                        
                              [0 1]      [0]                                        
                           >= [0 0] X1 + [0]                                        
                              [0 1]      [0]                                        
                           =  mark(f(X1,X2))                                        
        
          f(ok(X1),ok(X2)) =  [0 2] X1 + [0]                                        
                              [0 1]      [1]                                        
                           >= [0 2] X1 + [0]                                        
                              [0 1]      [1]                                        
                           =  ok(f(X1,X2))                                          
        
                g(mark(X)) =  [0 0] X + [0]                                         
                              [0 3]     [0]                                         
                           >= [0 0] X + [0]                                         
                              [0 3]     [0]                                         
                           =  mark(g(X))                                            
        
                  g(ok(X)) =  [0 6] X + [0]                                         
                              [0 3]     [3]                                         
                           >= [0 6] X + [0]                                         
                              [0 3]     [1]                                         
                           =  ok(g(X))                                              
        
          proper(f(X1,X2)) =  [0]                                                   
                              [0]                                                   
                           >= [0]                                                   
                              [0]                                                   
                           =  f(proper(X1),proper(X2))                              
        
              proper(g(X)) =  [0]                                                   
                              [0]                                                   
                           >= [0]                                                   
                              [0]                                                   
                           =  g(proper(X))                                          
        
**** Step 1.b:3.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
            active#(g(X)) -> c_3(g#(active(X)),active#(X))
            f#(mark(X1),X2) -> c_4(f#(X1,X2))
            f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
            g#(mark(X)) -> c_6(g#(X))
        - Weak DPs:
            g#(ok(X)) -> c_7(g#(X))
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 1.b:3.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
            active#(g(X)) -> c_3(g#(active(X)),active#(X))
            f#(mark(X1),X2) -> c_4(f#(X1,X2))
            f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
            g#(mark(X)) -> c_6(g#(X))
        - Weak DPs:
            g#(ok(X)) -> c_7(g#(X))
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          5: f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
          
        The strictly oriented rules are moved into the weak component.
***** Step 1.b:3.a:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
            active#(g(X)) -> c_3(g#(active(X)),active#(X))
            f#(mark(X1),X2) -> c_4(f#(X1,X2))
            f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
            g#(mark(X)) -> c_6(g#(X))
        - Weak DPs:
            g#(ok(X)) -> c_7(g#(X))
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1,3},
          uargs(c_3) = {1,2},
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1,2,3},
          uargs(c_9) = {1,2},
          uargs(c_10) = {1,2},
          uargs(c_11) = {1,2}
        
        Following symbols are considered usable:
          {active,f,g,proper,active#,f#,g#,proper#,top#}
        TcT has computed the following interpretation:
           p(active) = [0 0] x1 + [0]                      
                       [0 2]      [0]                      
                p(f) = [2 0] x1 + [0]                      
                       [0 2]      [0]                      
                p(g) = [2 0] x1 + [0]                      
                       [0 1]      [0]                      
             p(mark) = [0 0] x1 + [0]                      
                       [0 1]      [0]                      
               p(ok) = [0 2] x1 + [0]                      
                       [0 1]      [1]                      
           p(proper) = [0]                                 
                       [0]                                 
              p(top) = [1]                                 
                       [0]                                 
          p(active#) = [0 2] x1 + [0]                      
                       [0 0]      [0]                      
               p(f#) = [0 1] x1 + [0]                      
                       [0 1]      [0]                      
               p(g#) = [0]                                 
                       [0]                                 
          p(proper#) = [0]                                 
                       [0]                                 
             p(top#) = [1 0] x1 + [0]                      
                       [1 0]      [3]                      
              p(c_1) = [1 0] x1 + [1 0] x2 + [0]           
                       [0 0]      [0 2]      [0]           
              p(c_2) = [2 0] x1 + [1 1] x2 + [1 0] x3 + [0]
                       [0 0]      [0 0]      [0 0]      [0]
              p(c_3) = [2 0] x1 + [1 0] x2 + [0]           
                       [0 0]      [0 1]      [0]           
              p(c_4) = [1 0] x1 + [0]                      
                       [0 0]      [0]                      
              p(c_5) = [1 0] x1 + [0]                      
                       [1 0]      [0]                      
              p(c_6) = [2 0] x1 + [0]                      
                       [1 0]      [0]                      
              p(c_7) = [2 0] x1 + [0]                      
                       [0 0]      [0]                      
              p(c_8) = [1 2] x1 + [2 0] x2 + [1 0] x3 + [0]
                       [0 0]      [0 1]      [0 0]      [0]
              p(c_9) = [2 0] x1 + [1 0] x2 + [0]           
                       [0 1]      [0 0]      [0]           
             p(c_10) = [1 0] x1 + [1 0] x2 + [0]           
                       [0 0]      [0 0]      [3]           
             p(c_11) = [2 0] x1 + [1 0] x2 + [0]           
                       [0 0]      [0 2]      [0]           
        
        Following rules are strictly oriented:
        f#(ok(X1),ok(X2)) = [0 1] X1 + [1]
                            [0 1]      [1]
                          > [0 1] X1 + [0]
                            [0 1]      [0]
                          = c_5(f#(X1,X2))
        
        
        Following rules are (at-least) weakly oriented:
         active#(f(X1,X2)) =  [0 4] X1 + [0]                                        
                              [0 0]      [0]                                        
                           >= [0 4] X1 + [0]                                        
                              [0 0]      [0]                                        
                           =  c_1(f#(active(X1),X2),active#(X1))                    
        
        active#(f(g(X),Y)) =  [0 4] X + [0]                                         
                              [0 0]     [0]                                         
                           >= [0 4] X + [0]                                         
                              [0 0]     [0]                                         
                           =  c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))                 
        
             active#(g(X)) =  [0 2] X + [0]                                         
                              [0 0]     [0]                                         
                           >= [0 2] X + [0]                                         
                              [0 0]     [0]                                         
                           =  c_3(g#(active(X)),active#(X))                         
        
           f#(mark(X1),X2) =  [0 1] X1 + [0]                                        
                              [0 1]      [0]                                        
                           >= [0 1] X1 + [0]                                        
                              [0 0]      [0]                                        
                           =  c_4(f#(X1,X2))                                        
        
               g#(mark(X)) =  [0]                                                   
                              [0]                                                   
                           >= [0]                                                   
                              [0]                                                   
                           =  c_6(g#(X))                                            
        
                 g#(ok(X)) =  [0]                                                   
                              [0]                                                   
                           >= [0]                                                   
                              [0]                                                   
                           =  c_7(g#(X))                                            
        
         proper#(f(X1,X2)) =  [0]                                                   
                              [0]                                                   
                           >= [0]                                                   
                              [0]                                                   
                           =  c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
        
             proper#(g(X)) =  [0]                                                   
                              [0]                                                   
                           >= [0]                                                   
                              [0]                                                   
                           =  c_9(g#(proper(X)),proper#(X))                         
        
             top#(mark(X)) =  [0]                                                   
                              [3]                                                   
                           >= [0]                                                   
                              [3]                                                   
                           =  c_10(top#(proper(X)),proper#(X))                      
        
               top#(ok(X)) =  [0 2] X + [0]                                         
                              [0 2]     [3]                                         
                           >= [0 2] X + [0]                                         
                              [0 0]     [0]                                         
                           =  c_11(top#(active(X)),active#(X))                      
        
          active(f(X1,X2)) =  [0 0] X1 + [0]                                        
                              [0 4]      [0]                                        
                           >= [0 0] X1 + [0]                                        
                              [0 4]      [0]                                        
                           =  f(active(X1),X2)                                      
        
         active(f(g(X),Y)) =  [0 0] X + [0]                                         
                              [0 4]     [0]                                         
                           >= [0 0] X + [0]                                         
                              [0 2]     [0]                                         
                           =  mark(f(X,f(g(X),Y)))                                  
        
              active(g(X)) =  [0 0] X + [0]                                         
                              [0 2]     [0]                                         
                           >= [0 0] X + [0]                                         
                              [0 2]     [0]                                         
                           =  g(active(X))                                          
        
            f(mark(X1),X2) =  [0 0] X1 + [0]                                        
                              [0 2]      [0]                                        
                           >= [0 0] X1 + [0]                                        
                              [0 2]      [0]                                        
                           =  mark(f(X1,X2))                                        
        
          f(ok(X1),ok(X2)) =  [0 4] X1 + [0]                                        
                              [0 2]      [2]                                        
                           >= [0 4] X1 + [0]                                        
                              [0 2]      [1]                                        
                           =  ok(f(X1,X2))                                          
        
                g(mark(X)) =  [0 0] X + [0]                                         
                              [0 1]     [0]                                         
                           >= [0 0] X + [0]                                         
                              [0 1]     [0]                                         
                           =  mark(g(X))                                            
        
                  g(ok(X)) =  [0 4] X + [0]                                         
                              [0 1]     [1]                                         
                           >= [0 2] X + [0]                                         
                              [0 1]     [1]                                         
                           =  ok(g(X))                                              
        
          proper(f(X1,X2)) =  [0]                                                   
                              [0]                                                   
                           >= [0]                                                   
                              [0]                                                   
                           =  f(proper(X1),proper(X2))                              
        
              proper(g(X)) =  [0]                                                   
                              [0]                                                   
                           >= [0]                                                   
                              [0]                                                   
                           =  g(proper(X))                                          
        
***** Step 1.b:3.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
            active#(g(X)) -> c_3(g#(active(X)),active#(X))
            f#(mark(X1),X2) -> c_4(f#(X1,X2))
            g#(mark(X)) -> c_6(g#(X))
        - Weak DPs:
            f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
            g#(ok(X)) -> c_7(g#(X))
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:3.a:1.b:1.b:1: DecomposeDG WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
            active#(g(X)) -> c_3(g#(active(X)),active#(X))
            f#(mark(X1),X2) -> c_4(f#(X1,X2))
            g#(mark(X)) -> c_6(g#(X))
        - Weak DPs:
            f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
            g#(ok(X)) -> c_7(g#(X))
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
          top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        and a lower component
          active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
          active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
          active#(g(X)) -> c_3(g#(active(X)),active#(X))
          f#(mark(X1),X2) -> c_4(f#(X1,X2))
          f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
          g#(mark(X)) -> c_6(g#(X))
          g#(ok(X)) -> c_7(g#(X))
          proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
          proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
        Further, following extension rules are added to the lower component.
          top#(mark(X)) -> proper#(X)
          top#(mark(X)) -> top#(proper(X))
          top#(ok(X)) -> active#(X)
          top#(ok(X)) -> top#(active(X))
****** Step 1.b:3.a:1.b:1.b:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: top#(ok(X)) -> c_11(top#(active(X)),active#(X))
          
        The strictly oriented rules are moved into the weak component.
******* Step 1.b:3.a:1.b:1.b:1.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_10) = {1},
          uargs(c_11) = {1}
        
        Following symbols are considered usable:
          {active,f,g,proper,active#,f#,g#,proper#,top#}
        TcT has computed the following interpretation:
           p(active) = [0]                  
                p(f) = [1] x1 + [0]         
                p(g) = [8] x1 + [0]         
             p(mark) = [0]                  
               p(ok) = [1] x1 + [1]         
           p(proper) = [0]                  
              p(top) = [1] x1 + [0]         
          p(active#) = [4] x1 + [1]         
               p(f#) = [2] x1 + [2]         
               p(g#) = [2] x1 + [2]         
          p(proper#) = [0]                  
             p(top#) = [8] x1 + [0]         
              p(c_1) = [1] x2 + [4]         
              p(c_2) = [1] x2 + [2] x3 + [2]
              p(c_3) = [2] x1 + [0]         
              p(c_4) = [1] x1 + [1]         
              p(c_5) = [1]                  
              p(c_6) = [1] x1 + [0]         
              p(c_7) = [2] x1 + [0]         
              p(c_8) = [2] x2 + [1] x3 + [1]
              p(c_9) = [1] x1 + [2] x2 + [1]
             p(c_10) = [8] x1 + [4] x2 + [0]
             p(c_11) = [4] x1 + [2] x2 + [2]
        
        Following rules are strictly oriented:
        top#(ok(X)) = [8] X + [8]                     
                    > [8] X + [4]                     
                    = c_11(top#(active(X)),active#(X))
        
        
        Following rules are (at-least) weakly oriented:
            top#(mark(X)) =  [0]                             
                          >= [0]                             
                          =  c_10(top#(proper(X)),proper#(X))
        
         active(f(X1,X2)) =  [0]                             
                          >= [0]                             
                          =  f(active(X1),X2)                
        
        active(f(g(X),Y)) =  [0]                             
                          >= [0]                             
                          =  mark(f(X,f(g(X),Y)))            
        
             active(g(X)) =  [0]                             
                          >= [0]                             
                          =  g(active(X))                    
        
           f(mark(X1),X2) =  [0]                             
                          >= [0]                             
                          =  mark(f(X1,X2))                  
        
         f(ok(X1),ok(X2)) =  [1] X1 + [1]                    
                          >= [1] X1 + [1]                    
                          =  ok(f(X1,X2))                    
        
               g(mark(X)) =  [0]                             
                          >= [0]                             
                          =  mark(g(X))                      
        
                 g(ok(X)) =  [8] X + [8]                     
                          >= [8] X + [1]                     
                          =  ok(g(X))                        
        
         proper(f(X1,X2)) =  [0]                             
                          >= [0]                             
                          =  f(proper(X1),proper(X2))        
        
             proper(g(X)) =  [0]                             
                          >= [0]                             
                          =  g(proper(X))                    
        
******* Step 1.b:3.a:1.b:1.b:1.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
        - Weak DPs:
            top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 1.b:3.a:1.b:1.b:1.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
        - Weak DPs:
            top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
          
        The strictly oriented rules are moved into the weak component.
******** Step 1.b:3.a:1.b:1.b:1.a:1.b:1.a:1: NaturalMI WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
        - Weak DPs:
            top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_10) = {1},
          uargs(c_11) = {1}
        
        Following symbols are considered usable:
          {active,f,g,proper,active#,f#,g#,proper#,top#}
        TcT has computed the following interpretation:
           p(active) = [1]         
                p(f) = [1] x1 + [0]
                p(g) = [1] x1 + [0]
             p(mark) = [1]         
               p(ok) = [4]         
           p(proper) = [0]         
              p(top) = [0]         
          p(active#) = [0]         
               p(f#) = [0]         
               p(g#) = [0]         
          p(proper#) = [0]         
             p(top#) = [1] x1 + [0]
              p(c_1) = [0]         
              p(c_2) = [0]         
              p(c_3) = [0]         
              p(c_4) = [0]         
              p(c_5) = [0]         
              p(c_6) = [2]         
              p(c_7) = [0]         
              p(c_8) = [2]         
              p(c_9) = [0]         
             p(c_10) = [4] x1 + [0]
             p(c_11) = [4] x1 + [0]
        
        Following rules are strictly oriented:
        top#(mark(X)) = [1]                             
                      > [0]                             
                      = c_10(top#(proper(X)),proper#(X))
        
        
        Following rules are (at-least) weakly oriented:
              top#(ok(X)) =  [4]                             
                          >= [4]                             
                          =  c_11(top#(active(X)),active#(X))
        
         active(f(X1,X2)) =  [1]                             
                          >= [1]                             
                          =  f(active(X1),X2)                
        
        active(f(g(X),Y)) =  [1]                             
                          >= [1]                             
                          =  mark(f(X,f(g(X),Y)))            
        
             active(g(X)) =  [1]                             
                          >= [1]                             
                          =  g(active(X))                    
        
           f(mark(X1),X2) =  [1]                             
                          >= [1]                             
                          =  mark(f(X1,X2))                  
        
         f(ok(X1),ok(X2)) =  [4]                             
                          >= [4]                             
                          =  ok(f(X1,X2))                    
        
               g(mark(X)) =  [1]                             
                          >= [1]                             
                          =  mark(g(X))                      
        
                 g(ok(X)) =  [4]                             
                          >= [4]                             
                          =  ok(g(X))                        
        
         proper(f(X1,X2)) =  [0]                             
                          >= [0]                             
                          =  f(proper(X1),proper(X2))        
        
             proper(g(X)) =  [0]                             
                          >= [0]                             
                          =  g(proper(X))                    
        
******** Step 1.b:3.a:1.b:1.b:1.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******** Step 1.b:3.a:1.b:1.b:1.a:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
             -->_1 top#(ok(X)) -> c_11(top#(active(X)),active#(X)):2
             -->_1 top#(mark(X)) -> c_10(top#(proper(X)),proper#(X)):1
          
          2:W:top#(ok(X)) -> c_11(top#(active(X)),active#(X))
             -->_1 top#(ok(X)) -> c_11(top#(active(X)),active#(X)):2
             -->_1 top#(mark(X)) -> c_10(top#(proper(X)),proper#(X)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
          2: top#(ok(X)) -> c_11(top#(active(X)),active#(X))
******** Step 1.b:3.a:1.b:1.b:1.a:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

****** Step 1.b:3.a:1.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
            active#(g(X)) -> c_3(g#(active(X)),active#(X))
            f#(mark(X1),X2) -> c_4(f#(X1,X2))
            g#(mark(X)) -> c_6(g#(X))
        - Weak DPs:
            f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
            g#(ok(X)) -> c_7(g#(X))
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
            top#(mark(X)) -> proper#(X)
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> active#(X)
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
          5: g#(mark(X)) -> c_6(g#(X))
          
        The strictly oriented rules are moved into the weak component.
******* Step 1.b:3.a:1.b:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
            active#(g(X)) -> c_3(g#(active(X)),active#(X))
            f#(mark(X1),X2) -> c_4(f#(X1,X2))
            g#(mark(X)) -> c_6(g#(X))
        - Weak DPs:
            f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
            g#(ok(X)) -> c_7(g#(X))
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
            top#(mark(X)) -> proper#(X)
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> active#(X)
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1,3},
          uargs(c_3) = {1,2},
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1,2,3},
          uargs(c_9) = {1,2}
        
        Following symbols are considered usable:
          {active,f,g,proper,active#,f#,g#,proper#,top#}
        TcT has computed the following interpretation:
           p(active) = [1 1] x1 + [0]                      
                       [0 1]      [0]                      
                p(f) = [2 0] x1 + [0]                      
                       [0 2]      [0]                      
                p(g) = [2 0] x1 + [0]                      
                       [0 2]      [2]                      
             p(mark) = [1 0] x1 + [2]                      
                       [0 0]      [0]                      
               p(ok) = [1 1] x1 + [2]                      
                       [0 0]      [0]                      
           p(proper) = [0 0] x1 + [0]                      
                       [0 2]      [0]                      
              p(top) = [2 2] x1 + [0]                      
                       [0 0]      [0]                      
          p(active#) = [1 1] x1 + [0]                      
                       [0 0]      [2]                      
               p(f#) = [0 0] x2 + [0]                      
                       [1 0]      [0]                      
               p(g#) = [1 0] x1 + [0]                      
                       [0 2]      [0]                      
          p(proper#) = [0]                                 
                       [0]                                 
             p(top#) = [1 0] x1 + [0]                      
                       [0 0]      [3]                      
              p(c_1) = [1 0] x1 + [1 0] x2 + [0]           
                       [0 0]      [0 1]      [0]           
              p(c_2) = [2 0] x1 + [1 2] x3 + [1]           
                       [0 0]      [0 0]      [0]           
              p(c_3) = [1 0] x1 + [1 1] x2 + [0]           
                       [0 0]      [0 0]      [0]           
              p(c_4) = [2 0] x1 + [0]                      
                       [0 1]      [0]                      
              p(c_5) = [2 0] x1 + [0]                      
                       [2 1]      [2]                      
              p(c_6) = [1 0] x1 + [1]                      
                       [0 0]      [0]                      
              p(c_7) = [1 0] x1 + [1]                      
                       [0 0]      [0]                      
              p(c_8) = [2 1] x1 + [2 0] x2 + [1 0] x3 + [0]
                       [0 0]      [1 0]      [1 2]      [0]
              p(c_9) = [1 0] x1 + [1 0] x2 + [0]           
                       [2 0]      [0 2]      [0]           
             p(c_10) = [2 2] x2 + [1]                      
                       [0 1]      [1]                      
             p(c_11) = [0]                                 
                       [2]                                 
        
        Following rules are strictly oriented:
        active#(f(g(X),Y)) = [4 4] X + [4]                        
                             [0 0]     [2]                        
                           > [1 4] X + [1]                        
                             [0 0]     [0]                        
                           = c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
        
               g#(mark(X)) = [1 0] X + [2]                        
                             [0 0]     [0]                        
                           > [1 0] X + [1]                        
                             [0 0]     [0]                        
                           = c_6(g#(X))                           
        
        
        Following rules are (at-least) weakly oriented:
        active#(f(X1,X2)) =  [2 2] X1 + [0]                                        
                             [0 0]      [2]                                        
                          >= [1 1] X1 + [0]                                        
                             [0 0]      [2]                                        
                          =  c_1(f#(active(X1),X2),active#(X1))                    
        
            active#(g(X)) =  [2 2] X + [2]                                         
                             [0 0]     [2]                                         
                          >= [2 2] X + [2]                                         
                             [0 0]     [0]                                         
                          =  c_3(g#(active(X)),active#(X))                         
        
          f#(mark(X1),X2) =  [0 0] X2 + [0]                                        
                             [1 0]      [0]                                        
                          >= [0 0] X2 + [0]                                        
                             [1 0]      [0]                                        
                          =  c_4(f#(X1,X2))                                        
        
        f#(ok(X1),ok(X2)) =  [0 0] X2 + [0]                                        
                             [1 1]      [2]                                        
                          >= [0 0] X2 + [0]                                        
                             [1 0]      [2]                                        
                          =  c_5(f#(X1,X2))                                        
        
                g#(ok(X)) =  [1 1] X + [2]                                         
                             [0 0]     [0]                                         
                          >= [1 0] X + [1]                                         
                             [0 0]     [0]                                         
                          =  c_7(g#(X))                                            
        
        proper#(f(X1,X2)) =  [0]                                                   
                             [0]                                                   
                          >= [0]                                                   
                             [0]                                                   
                          =  c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
        
            proper#(g(X)) =  [0]                                                   
                             [0]                                                   
                          >= [0]                                                   
                             [0]                                                   
                          =  c_9(g#(proper(X)),proper#(X))                         
        
            top#(mark(X)) =  [1 0] X + [2]                                         
                             [0 0]     [3]                                         
                          >= [0]                                                   
                             [0]                                                   
                          =  proper#(X)                                            
        
            top#(mark(X)) =  [1 0] X + [2]                                         
                             [0 0]     [3]                                         
                          >= [0]                                                   
                             [3]                                                   
                          =  top#(proper(X))                                       
        
              top#(ok(X)) =  [1 1] X + [2]                                         
                             [0 0]     [3]                                         
                          >= [1 1] X + [0]                                         
                             [0 0]     [2]                                         
                          =  active#(X)                                            
        
              top#(ok(X)) =  [1 1] X + [2]                                         
                             [0 0]     [3]                                         
                          >= [1 1] X + [0]                                         
                             [0 0]     [3]                                         
                          =  top#(active(X))                                       
        
         active(f(X1,X2)) =  [2 2] X1 + [0]                                        
                             [0 2]      [0]                                        
                          >= [2 2] X1 + [0]                                        
                             [0 2]      [0]                                        
                          =  f(active(X1),X2)                                      
        
        active(f(g(X),Y)) =  [4 4] X + [4]                                         
                             [0 4]     [4]                                         
                          >= [2 0] X + [2]                                         
                             [0 0]     [0]                                         
                          =  mark(f(X,f(g(X),Y)))                                  
        
             active(g(X)) =  [2 2] X + [2]                                         
                             [0 2]     [2]                                         
                          >= [2 2] X + [0]                                         
                             [0 2]     [2]                                         
                          =  g(active(X))                                          
        
           f(mark(X1),X2) =  [2 0] X1 + [4]                                        
                             [0 0]      [0]                                        
                          >= [2 0] X1 + [2]                                        
                             [0 0]      [0]                                        
                          =  mark(f(X1,X2))                                        
        
         f(ok(X1),ok(X2)) =  [2 2] X1 + [4]                                        
                             [0 0]      [0]                                        
                          >= [2 2] X1 + [2]                                        
                             [0 0]      [0]                                        
                          =  ok(f(X1,X2))                                          
        
               g(mark(X)) =  [2 0] X + [4]                                         
                             [0 0]     [2]                                         
                          >= [2 0] X + [2]                                         
                             [0 0]     [0]                                         
                          =  mark(g(X))                                            
        
                 g(ok(X)) =  [2 2] X + [4]                                         
                             [0 0]     [2]                                         
                          >= [2 2] X + [4]                                         
                             [0 0]     [0]                                         
                          =  ok(g(X))                                              
        
         proper(f(X1,X2)) =  [0 0] X1 + [0]                                        
                             [0 4]      [0]                                        
                          >= [0 0] X1 + [0]                                        
                             [0 4]      [0]                                        
                          =  f(proper(X1),proper(X2))                              
        
             proper(g(X)) =  [0 0] X + [0]                                         
                             [0 4]     [4]                                         
                          >= [0 0] X + [0]                                         
                             [0 4]     [2]                                         
                          =  g(proper(X))                                          
        
******* Step 1.b:3.a:1.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            active#(g(X)) -> c_3(g#(active(X)),active#(X))
            f#(mark(X1),X2) -> c_4(f#(X1,X2))
        - Weak DPs:
            active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
            f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
            g#(mark(X)) -> c_6(g#(X))
            g#(ok(X)) -> c_7(g#(X))
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
            top#(mark(X)) -> proper#(X)
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> active#(X)
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 1.b:3.a:1.b:1.b:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            active#(g(X)) -> c_3(g#(active(X)),active#(X))
            f#(mark(X1),X2) -> c_4(f#(X1,X2))
        - Weak DPs:
            active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
            f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
            g#(mark(X)) -> c_6(g#(X))
            g#(ok(X)) -> c_7(g#(X))
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
            top#(mark(X)) -> proper#(X)
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> active#(X)
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):5
             -->_2 active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X)):4
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):3
             -->_2 active#(g(X)) -> c_3(g#(active(X)),active#(X)):2
             -->_2 active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1)):1
          
          2:S:active#(g(X)) -> c_3(g#(active(X)),active#(X))
             -->_1 g#(ok(X)) -> c_7(g#(X)):7
             -->_1 g#(mark(X)) -> c_6(g#(X)):6
             -->_2 active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X)):4
             -->_2 active#(g(X)) -> c_3(g#(active(X)),active#(X)):2
             -->_2 active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1)):1
          
          3:S:f#(mark(X1),X2) -> c_4(f#(X1,X2))
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):5
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):3
          
          4:W:active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
             -->_3 g#(ok(X)) -> c_7(g#(X)):7
             -->_3 g#(mark(X)) -> c_6(g#(X)):6
             -->_2 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):5
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):5
             -->_2 f#(mark(X1),X2) -> c_4(f#(X1,X2)):3
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):3
          
          5:W:f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):5
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):3
          
          6:W:g#(mark(X)) -> c_6(g#(X))
             -->_1 g#(ok(X)) -> c_7(g#(X)):7
             -->_1 g#(mark(X)) -> c_6(g#(X)):6
          
          7:W:g#(ok(X)) -> c_7(g#(X))
             -->_1 g#(ok(X)) -> c_7(g#(X)):7
             -->_1 g#(mark(X)) -> c_6(g#(X)):6
          
          8:W:proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
             -->_3 proper#(g(X)) -> c_9(g#(proper(X)),proper#(X)):9
             -->_2 proper#(g(X)) -> c_9(g#(proper(X)),proper#(X)):9
             -->_3 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):8
             -->_2 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):8
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):5
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):3
          
          9:W:proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
             -->_2 proper#(g(X)) -> c_9(g#(proper(X)),proper#(X)):9
             -->_2 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):8
             -->_1 g#(ok(X)) -> c_7(g#(X)):7
             -->_1 g#(mark(X)) -> c_6(g#(X)):6
          
          10:W:top#(mark(X)) -> proper#(X)
             -->_1 proper#(g(X)) -> c_9(g#(proper(X)),proper#(X)):9
             -->_1 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):8
          
          11:W:top#(mark(X)) -> top#(proper(X))
             -->_1 top#(ok(X)) -> top#(active(X)):13
             -->_1 top#(ok(X)) -> active#(X):12
             -->_1 top#(mark(X)) -> top#(proper(X)):11
             -->_1 top#(mark(X)) -> proper#(X):10
          
          12:W:top#(ok(X)) -> active#(X)
             -->_1 active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X)):4
             -->_1 active#(g(X)) -> c_3(g#(active(X)),active#(X)):2
             -->_1 active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1)):1
          
          13:W:top#(ok(X)) -> top#(active(X))
             -->_1 top#(ok(X)) -> top#(active(X)):13
             -->_1 top#(ok(X)) -> active#(X):12
             -->_1 top#(mark(X)) -> top#(proper(X)):11
             -->_1 top#(mark(X)) -> proper#(X):10
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          7: g#(ok(X)) -> c_7(g#(X))
          6: g#(mark(X)) -> c_6(g#(X))
******* Step 1.b:3.a:1.b:1.b:1.b:1.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            active#(g(X)) -> c_3(g#(active(X)),active#(X))
            f#(mark(X1),X2) -> c_4(f#(X1,X2))
        - Weak DPs:
            active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
            f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
            top#(mark(X)) -> proper#(X)
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> active#(X)
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):5
             -->_2 active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X)):4
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):3
             -->_2 active#(g(X)) -> c_3(g#(active(X)),active#(X)):2
             -->_2 active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1)):1
          
          2:S:active#(g(X)) -> c_3(g#(active(X)),active#(X))
             -->_2 active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X)):4
             -->_2 active#(g(X)) -> c_3(g#(active(X)),active#(X)):2
             -->_2 active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1)):1
          
          3:S:f#(mark(X1),X2) -> c_4(f#(X1,X2))
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):5
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):3
          
          4:W:active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
             -->_2 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):5
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):5
             -->_2 f#(mark(X1),X2) -> c_4(f#(X1,X2)):3
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):3
          
          5:W:f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):5
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):3
          
          8:W:proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
             -->_3 proper#(g(X)) -> c_9(g#(proper(X)),proper#(X)):9
             -->_2 proper#(g(X)) -> c_9(g#(proper(X)),proper#(X)):9
             -->_3 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):8
             -->_2 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):8
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):5
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):3
          
          9:W:proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
             -->_2 proper#(g(X)) -> c_9(g#(proper(X)),proper#(X)):9
             -->_2 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):8
          
          10:W:top#(mark(X)) -> proper#(X)
             -->_1 proper#(g(X)) -> c_9(g#(proper(X)),proper#(X)):9
             -->_1 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):8
          
          11:W:top#(mark(X)) -> top#(proper(X))
             -->_1 top#(ok(X)) -> top#(active(X)):13
             -->_1 top#(ok(X)) -> active#(X):12
             -->_1 top#(mark(X)) -> top#(proper(X)):11
             -->_1 top#(mark(X)) -> proper#(X):10
          
          12:W:top#(ok(X)) -> active#(X)
             -->_1 active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X)):4
             -->_1 active#(g(X)) -> c_3(g#(active(X)),active#(X)):2
             -->_1 active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1)):1
          
          13:W:top#(ok(X)) -> top#(active(X))
             -->_1 top#(ok(X)) -> top#(active(X)):13
             -->_1 top#(ok(X)) -> active#(X):12
             -->_1 top#(mark(X)) -> top#(proper(X)):11
             -->_1 top#(mark(X)) -> proper#(X):10
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y))
          active#(g(X)) -> c_3(active#(X))
          proper#(g(X)) -> c_9(proper#(X))
******* Step 1.b:3.a:1.b:1.b:1.b:1.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            active#(g(X)) -> c_3(active#(X))
            f#(mark(X1),X2) -> c_4(f#(X1,X2))
        - Weak DPs:
            active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y))
            f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(proper#(X))
            top#(mark(X)) -> proper#(X)
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> active#(X)
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/2,c_3/1
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/1,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
          3: f#(mark(X1),X2) -> c_4(f#(X1,X2))
          
        The strictly oriented rules are moved into the weak component.
******** Step 1.b:3.a:1.b:1.b:1.b:1.b:3.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            active#(g(X)) -> c_3(active#(X))
            f#(mark(X1),X2) -> c_4(f#(X1,X2))
        - Weak DPs:
            active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y))
            f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(proper#(X))
            top#(mark(X)) -> proper#(X)
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> active#(X)
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/2,c_3/1
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/1,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_8) = {1,2,3},
          uargs(c_9) = {1}
        
        Following symbols are considered usable:
          {active,f,g,proper,active#,f#,g#,proper#,top#}
        TcT has computed the following interpretation:
           p(active) = [1 1] x1 + [0]                      
                       [0 1]      [0]                      
                p(f) = [3 0] x1 + [0]                      
                       [0 3]      [1]                      
                p(g) = [2 0] x1 + [0]                      
                       [0 2]      [0]                      
             p(mark) = [1 0] x1 + [1]                      
                       [0 0]      [0]                      
               p(ok) = [1 2] x1 + [1]                      
                       [0 0]      [0]                      
           p(proper) = [0 0] x1 + [0]                      
                       [0 2]      [0]                      
              p(top) = [2]                                 
                       [0]                                 
          p(active#) = [1 1] x1 + [1]                      
                       [0 0]      [3]                      
               p(f#) = [2 0] x1 + [0]                      
                       [0 2]      [0]                      
               p(g#) = [0]                                 
                       [0]                                 
          p(proper#) = [0]                                 
                       [2]                                 
             p(top#) = [1 0] x1 + [0]                      
                       [3 0]      [3]                      
              p(c_1) = [1 0] x1 + [1 0] x2 + [0]           
                       [0 0]      [0 1]      [0]           
              p(c_2) = [2 0] x1 + [2]                      
                       [0 0]      [3]                      
              p(c_3) = [1 0] x1 + [0]                      
                       [0 0]      [0]                      
              p(c_4) = [1 0] x1 + [0]                      
                       [0 0]      [0]                      
              p(c_5) = [1 2] x1 + [2]                      
                       [0 0]      [0]                      
              p(c_6) = [0 2] x1 + [0]                      
                       [1 1]      [0]                      
              p(c_7) = [1]                                 
                       [0]                                 
              p(c_8) = [2 0] x1 + [1 0] x2 + [2 0] x3 + [0]
                       [1 0]      [2 0]      [0 0]      [0]
              p(c_9) = [1 0] x1 + [0]                      
                       [0 1]      [0]                      
             p(c_10) = [1 2] x1 + [0]                      
                       [2 2]      [0]                      
             p(c_11) = [1 1] x1 + [2]                      
                       [0 0]      [0]                      
        
        Following rules are strictly oriented:
        active#(f(X1,X2)) = [3 3] X1 + [2]                    
                            [0 0]      [3]                    
                          > [3 3] X1 + [1]                    
                            [0 0]      [3]                    
                          = c_1(f#(active(X1),X2),active#(X1))
        
          f#(mark(X1),X2) = [2 0] X1 + [2]                    
                            [0 0]      [0]                    
                          > [2 0] X1 + [0]                    
                            [0 0]      [0]                    
                          = c_4(f#(X1,X2))                    
        
        
        Following rules are (at-least) weakly oriented:
        active#(f(g(X),Y)) =  [6 6] X + [2]                                         
                              [0 0]     [3]                                         
                           >= [4 0] X + [2]                                         
                              [0 0]     [3]                                         
                           =  c_2(f#(X,f(g(X),Y)),f#(g(X),Y))                       
        
             active#(g(X)) =  [2 2] X + [1]                                         
                              [0 0]     [3]                                         
                           >= [1 1] X + [1]                                         
                              [0 0]     [0]                                         
                           =  c_3(active#(X))                                       
        
         f#(ok(X1),ok(X2)) =  [2 4] X1 + [2]                                        
                              [0 0]      [0]                                        
                           >= [2 4] X1 + [2]                                        
                              [0 0]      [0]                                        
                           =  c_5(f#(X1,X2))                                        
        
         proper#(f(X1,X2)) =  [0]                                                   
                              [2]                                                   
                           >= [0]                                                   
                              [0]                                                   
                           =  c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
        
             proper#(g(X)) =  [0]                                                   
                              [2]                                                   
                           >= [0]                                                   
                              [2]                                                   
                           =  c_9(proper#(X))                                       
        
             top#(mark(X)) =  [1 0] X + [1]                                         
                              [3 0]     [6]                                         
                           >= [0]                                                   
                              [2]                                                   
                           =  proper#(X)                                            
        
             top#(mark(X)) =  [1 0] X + [1]                                         
                              [3 0]     [6]                                         
                           >= [0]                                                   
                              [3]                                                   
                           =  top#(proper(X))                                       
        
               top#(ok(X)) =  [1 2] X + [1]                                         
                              [3 6]     [6]                                         
                           >= [1 1] X + [1]                                         
                              [0 0]     [3]                                         
                           =  active#(X)                                            
        
               top#(ok(X)) =  [1 2] X + [1]                                         
                              [3 6]     [6]                                         
                           >= [1 1] X + [0]                                         
                              [3 3]     [3]                                         
                           =  top#(active(X))                                       
        
          active(f(X1,X2)) =  [3 3] X1 + [1]                                        
                              [0 3]      [1]                                        
                           >= [3 3] X1 + [0]                                        
                              [0 3]      [1]                                        
                           =  f(active(X1),X2)                                      
        
         active(f(g(X),Y)) =  [6 6] X + [1]                                         
                              [0 6]     [1]                                         
                           >= [3 0] X + [1]                                         
                              [0 0]     [0]                                         
                           =  mark(f(X,f(g(X),Y)))                                  
        
              active(g(X)) =  [2 2] X + [0]                                         
                              [0 2]     [0]                                         
                           >= [2 2] X + [0]                                         
                              [0 2]     [0]                                         
                           =  g(active(X))                                          
        
            f(mark(X1),X2) =  [3 0] X1 + [3]                                        
                              [0 0]      [1]                                        
                           >= [3 0] X1 + [1]                                        
                              [0 0]      [0]                                        
                           =  mark(f(X1,X2))                                        
        
          f(ok(X1),ok(X2)) =  [3 6] X1 + [3]                                        
                              [0 0]      [1]                                        
                           >= [3 6] X1 + [3]                                        
                              [0 0]      [0]                                        
                           =  ok(f(X1,X2))                                          
        
                g(mark(X)) =  [2 0] X + [2]                                         
                              [0 0]     [0]                                         
                           >= [2 0] X + [1]                                         
                              [0 0]     [0]                                         
                           =  mark(g(X))                                            
        
                  g(ok(X)) =  [2 4] X + [2]                                         
                              [0 0]     [0]                                         
                           >= [2 4] X + [1]                                         
                              [0 0]     [0]                                         
                           =  ok(g(X))                                              
        
          proper(f(X1,X2)) =  [0 0] X1 + [0]                                        
                              [0 6]      [2]                                        
                           >= [0 0] X1 + [0]                                        
                              [0 6]      [1]                                        
                           =  f(proper(X1),proper(X2))                              
        
              proper(g(X)) =  [0 0] X + [0]                                         
                              [0 4]     [0]                                         
                           >= [0 0] X + [0]                                         
                              [0 4]     [0]                                         
                           =  g(proper(X))                                          
        
******** Step 1.b:3.a:1.b:1.b:1.b:1.b:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            active#(g(X)) -> c_3(active#(X))
        - Weak DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y))
            f#(mark(X1),X2) -> c_4(f#(X1,X2))
            f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(proper#(X))
            top#(mark(X)) -> proper#(X)
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> active#(X)
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/2,c_3/1
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/1,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******** Step 1.b:3.a:1.b:1.b:1.b:1.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            active#(g(X)) -> c_3(active#(X))
        - Weak DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y))
            f#(mark(X1),X2) -> c_4(f#(X1,X2))
            f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(proper#(X))
            top#(mark(X)) -> proper#(X)
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> active#(X)
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/2,c_3/1
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/1,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:active#(g(X)) -> c_3(active#(X))
             -->_1 active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y)):3
             -->_1 active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1)):2
             -->_1 active#(g(X)) -> c_3(active#(X)):1
          
          2:W:active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):5
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):4
             -->_2 active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y)):3
             -->_2 active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1)):2
             -->_2 active#(g(X)) -> c_3(active#(X)):1
          
          3:W:active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y))
             -->_2 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):5
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):5
             -->_2 f#(mark(X1),X2) -> c_4(f#(X1,X2)):4
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):4
          
          4:W:f#(mark(X1),X2) -> c_4(f#(X1,X2))
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):5
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):4
          
          5:W:f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):5
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):4
          
          6:W:proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
             -->_3 proper#(g(X)) -> c_9(proper#(X)):7
             -->_2 proper#(g(X)) -> c_9(proper#(X)):7
             -->_3 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):6
             -->_2 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):6
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):5
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):4
          
          7:W:proper#(g(X)) -> c_9(proper#(X))
             -->_1 proper#(g(X)) -> c_9(proper#(X)):7
             -->_1 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):6
          
          8:W:top#(mark(X)) -> proper#(X)
             -->_1 proper#(g(X)) -> c_9(proper#(X)):7
             -->_1 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):6
          
          9:W:top#(mark(X)) -> top#(proper(X))
             -->_1 top#(ok(X)) -> top#(active(X)):11
             -->_1 top#(ok(X)) -> active#(X):10
             -->_1 top#(mark(X)) -> top#(proper(X)):9
             -->_1 top#(mark(X)) -> proper#(X):8
          
          10:W:top#(ok(X)) -> active#(X)
             -->_1 active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y)):3
             -->_1 active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1)):2
             -->_1 active#(g(X)) -> c_3(active#(X)):1
          
          11:W:top#(ok(X)) -> top#(active(X))
             -->_1 top#(ok(X)) -> top#(active(X)):11
             -->_1 top#(ok(X)) -> active#(X):10
             -->_1 top#(mark(X)) -> top#(proper(X)):9
             -->_1 top#(mark(X)) -> proper#(X):8
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          8: top#(mark(X)) -> proper#(X)
          6: proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
          7: proper#(g(X)) -> c_9(proper#(X))
          3: active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y))
          5: f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
          4: f#(mark(X1),X2) -> c_4(f#(X1,X2))
******** Step 1.b:3.a:1.b:1.b:1.b:1.b:3.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            active#(g(X)) -> c_3(active#(X))
        - Weak DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> active#(X)
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/2,c_3/1
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/1,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:active#(g(X)) -> c_3(active#(X))
             -->_1 active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1)):2
             -->_1 active#(g(X)) -> c_3(active#(X)):1
          
          2:W:active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
             -->_2 active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1)):2
             -->_2 active#(g(X)) -> c_3(active#(X)):1
          
          9:W:top#(mark(X)) -> top#(proper(X))
             -->_1 top#(ok(X)) -> top#(active(X)):11
             -->_1 top#(ok(X)) -> active#(X):10
             -->_1 top#(mark(X)) -> top#(proper(X)):9
          
          10:W:top#(ok(X)) -> active#(X)
             -->_1 active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1)):2
             -->_1 active#(g(X)) -> c_3(active#(X)):1
          
          11:W:top#(ok(X)) -> top#(active(X))
             -->_1 top#(ok(X)) -> top#(active(X)):11
             -->_1 top#(ok(X)) -> active#(X):10
             -->_1 top#(mark(X)) -> top#(proper(X)):9
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          active#(f(X1,X2)) -> c_1(active#(X1))
******** Step 1.b:3.a:1.b:1.b:1.b:1.b:3.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            active#(g(X)) -> c_3(active#(X))
        - Weak DPs:
            active#(f(X1,X2)) -> c_1(active#(X1))
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> active#(X)
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/1,c_2/2,c_3/1
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/1,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: active#(g(X)) -> c_3(active#(X))
          
        The strictly oriented rules are moved into the weak component.
********* Step 1.b:3.a:1.b:1.b:1.b:1.b:3.b:3.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            active#(g(X)) -> c_3(active#(X))
        - Weak DPs:
            active#(f(X1,X2)) -> c_1(active#(X1))
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> active#(X)
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/1,c_2/2,c_3/1
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/1,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1},
          uargs(c_3) = {1}
        
        Following symbols are considered usable:
          {active,f,g,proper,active#,f#,g#,proper#,top#}
        TcT has computed the following interpretation:
           p(active) = [1] x1 + [0]         
                p(f) = [1] x1 + [0]         
                p(g) = [6] x1 + [4]         
             p(mark) = [1] x1 + [2]         
               p(ok) = [1] x1 + [0]         
           p(proper) = [1] x1 + [0]         
              p(top) = [0]                  
          p(active#) = [4] x1 + [0]         
               p(f#) = [2] x2 + [0]         
               p(g#) = [2] x1 + [0]         
          p(proper#) = [1]                  
             p(top#) = [4] x1 + [1]         
              p(c_1) = [1] x1 + [0]         
              p(c_2) = [1] x1 + [1]         
              p(c_3) = [2] x1 + [7]         
              p(c_4) = [0]                  
              p(c_5) = [0]                  
              p(c_6) = [1] x1 + [0]         
              p(c_7) = [8]                  
              p(c_8) = [2] x1 + [1] x2 + [0]
              p(c_9) = [4] x1 + [0]         
             p(c_10) = [1] x1 + [0]         
             p(c_11) = [1] x1 + [2] x2 + [8]
        
        Following rules are strictly oriented:
        active#(g(X)) = [24] X + [16]  
                      > [8] X + [7]    
                      = c_3(active#(X))
        
        
        Following rules are (at-least) weakly oriented:
        active#(f(X1,X2)) =  [4] X1 + [0]            
                          >= [4] X1 + [0]            
                          =  c_1(active#(X1))        
        
            top#(mark(X)) =  [4] X + [9]             
                          >= [4] X + [1]             
                          =  top#(proper(X))         
        
              top#(ok(X)) =  [4] X + [1]             
                          >= [4] X + [0]             
                          =  active#(X)              
        
              top#(ok(X)) =  [4] X + [1]             
                          >= [4] X + [1]             
                          =  top#(active(X))         
        
         active(f(X1,X2)) =  [1] X1 + [0]            
                          >= [1] X1 + [0]            
                          =  f(active(X1),X2)        
        
        active(f(g(X),Y)) =  [6] X + [4]             
                          >= [1] X + [2]             
                          =  mark(f(X,f(g(X),Y)))    
        
             active(g(X)) =  [6] X + [4]             
                          >= [6] X + [4]             
                          =  g(active(X))            
        
           f(mark(X1),X2) =  [1] X1 + [2]            
                          >= [1] X1 + [2]            
                          =  mark(f(X1,X2))          
        
         f(ok(X1),ok(X2)) =  [1] X1 + [0]            
                          >= [1] X1 + [0]            
                          =  ok(f(X1,X2))            
        
               g(mark(X)) =  [6] X + [16]            
                          >= [6] X + [6]             
                          =  mark(g(X))              
        
                 g(ok(X)) =  [6] X + [4]             
                          >= [6] X + [4]             
                          =  ok(g(X))                
        
         proper(f(X1,X2)) =  [1] X1 + [0]            
                          >= [1] X1 + [0]            
                          =  f(proper(X1),proper(X2))
        
             proper(g(X)) =  [6] X + [4]             
                          >= [6] X + [4]             
                          =  g(proper(X))            
        
********* Step 1.b:3.a:1.b:1.b:1.b:1.b:3.b:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            active#(f(X1,X2)) -> c_1(active#(X1))
            active#(g(X)) -> c_3(active#(X))
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> active#(X)
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/1,c_2/2,c_3/1
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/1,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

********* Step 1.b:3.a:1.b:1.b:1.b:1.b:3.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            active#(f(X1,X2)) -> c_1(active#(X1))
            active#(g(X)) -> c_3(active#(X))
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> active#(X)
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/1,c_2/2,c_3/1
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/1,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:active#(f(X1,X2)) -> c_1(active#(X1))
             -->_1 active#(g(X)) -> c_3(active#(X)):2
             -->_1 active#(f(X1,X2)) -> c_1(active#(X1)):1
          
          2:W:active#(g(X)) -> c_3(active#(X))
             -->_1 active#(g(X)) -> c_3(active#(X)):2
             -->_1 active#(f(X1,X2)) -> c_1(active#(X1)):1
          
          3:W:top#(mark(X)) -> top#(proper(X))
             -->_1 top#(ok(X)) -> top#(active(X)):5
             -->_1 top#(ok(X)) -> active#(X):4
             -->_1 top#(mark(X)) -> top#(proper(X)):3
          
          4:W:top#(ok(X)) -> active#(X)
             -->_1 active#(g(X)) -> c_3(active#(X)):2
             -->_1 active#(f(X1,X2)) -> c_1(active#(X1)):1
          
          5:W:top#(ok(X)) -> top#(active(X))
             -->_1 top#(ok(X)) -> top#(active(X)):5
             -->_1 top#(ok(X)) -> active#(X):4
             -->_1 top#(mark(X)) -> top#(proper(X)):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: top#(mark(X)) -> top#(proper(X))
          5: top#(ok(X)) -> top#(active(X))
          4: top#(ok(X)) -> active#(X)
          1: active#(f(X1,X2)) -> c_1(active#(X1))
          2: active#(g(X)) -> c_3(active#(X))
********* Step 1.b:3.a:1.b:1.b:1.b:1.b:3.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/1,c_2/2,c_3/1
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/1,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 1.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        - Weak DPs:
            active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
            active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
            active#(g(X)) -> c_3(g#(active(X)),active#(X))
            f#(mark(X1),X2) -> c_4(f#(X1,X2))
            f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
            g#(mark(X)) -> c_6(g#(X))
            g#(ok(X)) -> c_7(g#(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):9
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):8
             -->_3 proper#(g(X)) -> c_9(g#(proper(X)),proper#(X)):2
             -->_2 proper#(g(X)) -> c_9(g#(proper(X)),proper#(X)):2
             -->_3 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):1
             -->_2 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):1
          
          2:S:proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
             -->_1 g#(ok(X)) -> c_7(g#(X)):11
             -->_1 g#(mark(X)) -> c_6(g#(X)):10
             -->_2 proper#(g(X)) -> c_9(g#(proper(X)),proper#(X)):2
             -->_2 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):1
          
          3:S:top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
             -->_1 top#(ok(X)) -> c_11(top#(active(X)),active#(X)):4
             -->_1 top#(mark(X)) -> c_10(top#(proper(X)),proper#(X)):3
             -->_2 proper#(g(X)) -> c_9(g#(proper(X)),proper#(X)):2
             -->_2 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):1
          
          4:S:top#(ok(X)) -> c_11(top#(active(X)),active#(X))
             -->_2 active#(g(X)) -> c_3(g#(active(X)),active#(X)):7
             -->_2 active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X)):6
             -->_2 active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1)):5
             -->_1 top#(ok(X)) -> c_11(top#(active(X)),active#(X)):4
             -->_1 top#(mark(X)) -> c_10(top#(proper(X)),proper#(X)):3
          
          5:W:active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):9
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):8
             -->_2 active#(g(X)) -> c_3(g#(active(X)),active#(X)):7
             -->_2 active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X)):6
             -->_2 active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1)):5
          
          6:W:active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
             -->_3 g#(ok(X)) -> c_7(g#(X)):11
             -->_3 g#(mark(X)) -> c_6(g#(X)):10
             -->_2 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):9
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):9
             -->_2 f#(mark(X1),X2) -> c_4(f#(X1,X2)):8
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):8
          
          7:W:active#(g(X)) -> c_3(g#(active(X)),active#(X))
             -->_1 g#(ok(X)) -> c_7(g#(X)):11
             -->_1 g#(mark(X)) -> c_6(g#(X)):10
             -->_2 active#(g(X)) -> c_3(g#(active(X)),active#(X)):7
             -->_2 active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X)):6
             -->_2 active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1)):5
          
          8:W:f#(mark(X1),X2) -> c_4(f#(X1,X2))
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):9
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):8
          
          9:W:f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
             -->_1 f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2)):9
             -->_1 f#(mark(X1),X2) -> c_4(f#(X1,X2)):8
          
          10:W:g#(mark(X)) -> c_6(g#(X))
             -->_1 g#(ok(X)) -> c_7(g#(X)):11
             -->_1 g#(mark(X)) -> c_6(g#(X)):10
          
          11:W:g#(ok(X)) -> c_7(g#(X))
             -->_1 g#(ok(X)) -> c_7(g#(X)):11
             -->_1 g#(mark(X)) -> c_6(g#(X)):10
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          7: active#(g(X)) -> c_3(g#(active(X)),active#(X))
          5: active#(f(X1,X2)) -> c_1(f#(active(X1),X2),active#(X1))
          6: active#(f(g(X),Y)) -> c_2(f#(X,f(g(X),Y)),f#(g(X),Y),g#(X))
          11: g#(ok(X)) -> c_7(g#(X))
          10: g#(mark(X)) -> c_6(g#(X))
          9: f#(ok(X1),ok(X2)) -> c_5(f#(X1,X2))
          8: f#(mark(X1),X2) -> c_4(f#(X1,X2))
*** Step 1.b:3.b:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)),active#(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/3,c_9/2,c_10/2,c_11/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2))
             -->_3 proper#(g(X)) -> c_9(g#(proper(X)),proper#(X)):2
             -->_2 proper#(g(X)) -> c_9(g#(proper(X)),proper#(X)):2
             -->_3 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):1
             -->_2 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):1
          
          2:S:proper#(g(X)) -> c_9(g#(proper(X)),proper#(X))
             -->_2 proper#(g(X)) -> c_9(g#(proper(X)),proper#(X)):2
             -->_2 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):1
          
          3:S:top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
             -->_1 top#(ok(X)) -> c_11(top#(active(X)),active#(X)):4
             -->_1 top#(mark(X)) -> c_10(top#(proper(X)),proper#(X)):3
             -->_2 proper#(g(X)) -> c_9(g#(proper(X)),proper#(X)):2
             -->_2 proper#(f(X1,X2)) -> c_8(f#(proper(X1),proper(X2)),proper#(X1),proper#(X2)):1
          
          4:S:top#(ok(X)) -> c_11(top#(active(X)),active#(X))
             -->_1 top#(ok(X)) -> c_11(top#(active(X)),active#(X)):4
             -->_1 top#(mark(X)) -> c_10(top#(proper(X)),proper#(X)):3
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2))
          proper#(g(X)) -> c_9(proper#(X))
          top#(ok(X)) -> c_11(top#(active(X)))
*** Step 1.b:3.b:3: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(proper#(X))
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/2,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2))
              proper#(g(X)) -> c_9(proper#(X))
          - Weak DPs:
              top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
              top#(ok(X)) -> c_11(top#(active(X)))
          - Weak TRS:
              active(f(X1,X2)) -> f(active(X1),X2)
              active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
              active(g(X)) -> g(active(X))
              f(mark(X1),X2) -> mark(f(X1,X2))
              f(ok(X1),ok(X2)) -> ok(f(X1,X2))
              g(mark(X)) -> mark(g(X))
              g(ok(X)) -> ok(g(X))
              proper(f(X1,X2)) -> f(proper(X1),proper(X2))
              proper(g(X)) -> g(proper(X))
          - Signature:
              {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
              ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/2,c_11/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
        
        Problem (S)
          - Strict DPs:
              top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
              top#(ok(X)) -> c_11(top#(active(X)))
          - Weak DPs:
              proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2))
              proper#(g(X)) -> c_9(proper#(X))
          - Weak TRS:
              active(f(X1,X2)) -> f(active(X1),X2)
              active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
              active(g(X)) -> g(active(X))
              f(mark(X1),X2) -> mark(f(X1,X2))
              f(ok(X1),ok(X2)) -> ok(f(X1,X2))
              g(mark(X)) -> mark(g(X))
              g(ok(X)) -> ok(g(X))
              proper(f(X1,X2)) -> f(proper(X1),proper(X2))
              proper(g(X)) -> g(proper(X))
          - Signature:
              {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
              ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/2,c_11/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
**** Step 1.b:3.b:3.a:1: DecomposeDG WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(proper#(X))
        - Weak DPs:
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/2,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
          top#(ok(X)) -> c_11(top#(active(X)))
        and a lower component
          proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2))
          proper#(g(X)) -> c_9(proper#(X))
        Further, following extension rules are added to the lower component.
          top#(mark(X)) -> proper#(X)
          top#(mark(X)) -> top#(proper(X))
          top#(ok(X)) -> top#(active(X))
***** Step 1.b:3.b:3.a:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
        - Weak DPs:
            top#(ok(X)) -> c_11(top#(active(X)))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/2,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
          
        The strictly oriented rules are moved into the weak component.
****** Step 1.b:3.b:3.a:1.a:1.a:1: NaturalMI WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
        - Weak DPs:
            top#(ok(X)) -> c_11(top#(active(X)))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/2,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_10) = {1},
          uargs(c_11) = {1}
        
        Following symbols are considered usable:
          {active,f,g,proper,active#,f#,g#,proper#,top#}
        TcT has computed the following interpretation:
           p(active) = [4]                  
                p(f) = [1] x1 + [0]         
                p(g) = [1] x1 + [0]         
             p(mark) = [4]                  
               p(ok) = [6]                  
           p(proper) = [0]                  
              p(top) = [1]                  
          p(active#) = [1]                  
               p(f#) = [1] x2 + [8]         
               p(g#) = [1] x1 + [8]         
          p(proper#) = [0]                  
             p(top#) = [2] x1 + [1]         
              p(c_1) = [1] x1 + [1]         
              p(c_2) = [1] x1 + [4]         
              p(c_3) = [0]                  
              p(c_4) = [0]                  
              p(c_5) = [0]                  
              p(c_6) = [4]                  
              p(c_7) = [2]                  
              p(c_8) = [1] x1 + [1] x2 + [0]
              p(c_9) = [8] x1 + [1]         
             p(c_10) = [8] x1 + [4] x2 + [0]
             p(c_11) = [1] x1 + [4]         
        
        Following rules are strictly oriented:
        top#(mark(X)) = [9]                             
                      > [8]                             
                      = c_10(top#(proper(X)),proper#(X))
        
        
        Following rules are (at-least) weakly oriented:
              top#(ok(X)) =  [13]                    
                          >= [13]                    
                          =  c_11(top#(active(X)))   
        
         active(f(X1,X2)) =  [4]                     
                          >= [4]                     
                          =  f(active(X1),X2)        
        
        active(f(g(X),Y)) =  [4]                     
                          >= [4]                     
                          =  mark(f(X,f(g(X),Y)))    
        
             active(g(X)) =  [4]                     
                          >= [4]                     
                          =  g(active(X))            
        
           f(mark(X1),X2) =  [4]                     
                          >= [4]                     
                          =  mark(f(X1,X2))          
        
         f(ok(X1),ok(X2)) =  [6]                     
                          >= [6]                     
                          =  ok(f(X1,X2))            
        
               g(mark(X)) =  [4]                     
                          >= [4]                     
                          =  mark(g(X))              
        
                 g(ok(X)) =  [6]                     
                          >= [6]                     
                          =  ok(g(X))                
        
         proper(f(X1,X2)) =  [0]                     
                          >= [0]                     
                          =  f(proper(X1),proper(X2))
        
             proper(g(X)) =  [0]                     
                          >= [0]                     
                          =  g(proper(X))            
        
****** Step 1.b:3.b:3.a:1.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/2,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

****** Step 1.b:3.b:3.a:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/2,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
             -->_1 top#(ok(X)) -> c_11(top#(active(X))):2
             -->_1 top#(mark(X)) -> c_10(top#(proper(X)),proper#(X)):1
          
          2:W:top#(ok(X)) -> c_11(top#(active(X)))
             -->_1 top#(ok(X)) -> c_11(top#(active(X))):2
             -->_1 top#(mark(X)) -> c_10(top#(proper(X)),proper#(X)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
          2: top#(ok(X)) -> c_11(top#(active(X)))
****** Step 1.b:3.b:3.a:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/2,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

***** Step 1.b:3.b:3.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(proper#(X))
        - Weak DPs:
            top#(mark(X)) -> proper#(X)
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/2,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: proper#(g(X)) -> c_9(proper#(X))
          
        The strictly oriented rules are moved into the weak component.
****** Step 1.b:3.b:3.a:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(proper#(X))
        - Weak DPs:
            top#(mark(X)) -> proper#(X)
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/2,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_8) = {1,2},
          uargs(c_9) = {1}
        
        Following symbols are considered usable:
          {active,f,g,proper,active#,f#,g#,proper#,top#}
        TcT has computed the following interpretation:
           p(active) = [1 0] x1 + [0]                      
                       [0 3]      [0]                      
                p(f) = [1 0] x1 + [2 0] x2 + [0]           
                       [0 1]      [0 2]      [0]           
                p(g) = [4 0] x1 + [0]                      
                       [0 4]      [1]                      
             p(mark) = [0 0] x1 + [0]                      
                       [0 1]      [0]                      
               p(ok) = [1 1] x1 + [2]                      
                       [0 1]      [0]                      
           p(proper) = [0 0] x1 + [0]                      
                       [0 1]      [0]                      
              p(top) = [1 1] x1 + [4]                      
                       [1 2]      [1]                      
          p(active#) = [4]                                 
                       [0]                                 
               p(f#) = [2 0] x2 + [1]                      
                       [4 0]      [1]                      
               p(g#) = [1]                                 
                       [0]                                 
          p(proper#) = [0 1] x1 + [0]                      
                       [0 0]      [0]                      
             p(top#) = [2 1] x1 + [0]                      
                       [0 0]      [4]                      
              p(c_1) = [0 1] x1 + [2 0] x2 + [0]           
                       [1 2]      [0 1]      [1]           
              p(c_2) = [0 1] x1 + [2 1] x2 + [1 1] x3 + [1]
                       [0 2]      [1 1]      [0 0]      [1]
              p(c_3) = [1 0] x2 + [0]                      
                       [0 1]      [2]                      
              p(c_4) = [1]                                 
                       [2]                                 
              p(c_5) = [0 0] x1 + [0]                      
                       [0 1]      [2]                      
              p(c_6) = [1 1] x1 + [1]                      
                       [1 0]      [1]                      
              p(c_7) = [0 0] x1 + [1]                      
                       [2 1]      [4]                      
              p(c_8) = [1 0] x1 + [1 0] x2 + [0]           
                       [0 1]      [0 1]      [0]           
              p(c_9) = [4 0] x1 + [0]                      
                       [0 1]      [0]                      
             p(c_10) = [1 0] x1 + [0 0] x2 + [2]           
                       [1 1]      [1 1]      [0]           
             p(c_11) = [1]                                 
                       [1]                                 
        
        Following rules are strictly oriented:
        proper#(g(X)) = [0 4] X + [1]  
                        [0 0]     [0]  
                      > [0 4] X + [0]  
                        [0 0]     [0]  
                      = c_9(proper#(X))
        
        
        Following rules are (at-least) weakly oriented:
        proper#(f(X1,X2)) =  [0 1] X1 + [0 2] X2 + [0]   
                             [0 0]      [0 0]      [0]   
                          >= [0 1] X1 + [0 1] X2 + [0]   
                             [0 0]      [0 0]      [0]   
                          =  c_8(proper#(X1),proper#(X2))
        
            top#(mark(X)) =  [0 1] X + [0]               
                             [0 0]     [4]               
                          >= [0 1] X + [0]               
                             [0 0]     [0]               
                          =  proper#(X)                  
        
            top#(mark(X)) =  [0 1] X + [0]               
                             [0 0]     [4]               
                          >= [0 1] X + [0]               
                             [0 0]     [4]               
                          =  top#(proper(X))             
        
              top#(ok(X)) =  [2 3] X + [4]               
                             [0 0]     [4]               
                          >= [2 3] X + [0]               
                             [0 0]     [4]               
                          =  top#(active(X))             
        
         active(f(X1,X2)) =  [1 0] X1 + [2 0] X2 + [0]   
                             [0 3]      [0 6]      [0]   
                          >= [1 0] X1 + [2 0] X2 + [0]   
                             [0 3]      [0 2]      [0]   
                          =  f(active(X1),X2)            
        
        active(f(g(X),Y)) =  [4  0] X + [2 0] Y + [0]    
                             [0 12]     [0 6]     [3]    
                          >= [0 0] X + [0 0] Y + [0]     
                             [0 9]     [0 4]     [2]     
                          =  mark(f(X,f(g(X),Y)))        
        
             active(g(X)) =  [4  0] X + [0]              
                             [0 12]     [3]              
                          >= [4  0] X + [0]              
                             [0 12]     [1]              
                          =  g(active(X))                
        
           f(mark(X1),X2) =  [0 0] X1 + [2 0] X2 + [0]   
                             [0 1]      [0 2]      [0]   
                          >= [0 0] X1 + [0 0] X2 + [0]   
                             [0 1]      [0 2]      [0]   
                          =  mark(f(X1,X2))              
        
         f(ok(X1),ok(X2)) =  [1 1] X1 + [2 2] X2 + [6]   
                             [0 1]      [0 2]      [0]   
                          >= [1 1] X1 + [2 2] X2 + [2]   
                             [0 1]      [0 2]      [0]   
                          =  ok(f(X1,X2))                
        
               g(mark(X)) =  [0 0] X + [0]               
                             [0 4]     [1]               
                          >= [0 0] X + [0]               
                             [0 4]     [1]               
                          =  mark(g(X))                  
        
                 g(ok(X)) =  [4 4] X + [8]               
                             [0 4]     [1]               
                          >= [4 4] X + [3]               
                             [0 4]     [1]               
                          =  ok(g(X))                    
        
         proper(f(X1,X2)) =  [0 0] X1 + [0 0] X2 + [0]   
                             [0 1]      [0 2]      [0]   
                          >= [0 0] X1 + [0 0] X2 + [0]   
                             [0 1]      [0 2]      [0]   
                          =  f(proper(X1),proper(X2))    
        
             proper(g(X)) =  [0 0] X + [0]               
                             [0 4]     [1]               
                          >= [0 0] X + [0]               
                             [0 4]     [1]               
                          =  g(proper(X))                
        
****** Step 1.b:3.b:3.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2))
        - Weak DPs:
            proper#(g(X)) -> c_9(proper#(X))
            top#(mark(X)) -> proper#(X)
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/2,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

****** Step 1.b:3.b:3.a:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2))
        - Weak DPs:
            proper#(g(X)) -> c_9(proper#(X))
            top#(mark(X)) -> proper#(X)
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/2,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2))
          
        The strictly oriented rules are moved into the weak component.
******* Step 1.b:3.b:3.a:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2))
        - Weak DPs:
            proper#(g(X)) -> c_9(proper#(X))
            top#(mark(X)) -> proper#(X)
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/2,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_8) = {1,2},
          uargs(c_9) = {1}
        
        Following symbols are considered usable:
          {active,f,g,proper,active#,f#,g#,proper#,top#}
        TcT has computed the following interpretation:
           p(active) = [1 0] x1 + [0]           
                       [0 4]      [0]           
                p(f) = [2 0] x1 + [1 0] x2 + [0]
                       [0 1]      [0 1]      [1]
                p(g) = [1 0] x1 + [0]           
                       [0 1]      [0]           
             p(mark) = [0 0] x1 + [0]           
                       [0 1]      [0]           
               p(ok) = [1 4] x1 + [2]           
                       [0 0]      [4]           
           p(proper) = [0 0] x1 + [0]           
                       [0 1]      [0]           
              p(top) = [0 0] x1 + [0]           
                       [4 1]      [1]           
          p(active#) = [1 1] x1 + [1]           
                       [2 1]      [1]           
               p(f#) = [0 2] x1 + [0 1] x2 + [4]
                       [0 2]      [0 0]      [0]
               p(g#) = [1 0] x1 + [0]           
                       [1 1]      [0]           
          p(proper#) = [0 1] x1 + [0]           
                       [0 0]      [0]           
             p(top#) = [2 2] x1 + [2]           
                       [0 0]      [2]           
              p(c_1) = [0 1] x1 + [4]           
                       [1 1]      [0]           
              p(c_2) = [0 0] x2 + [0 1] x3 + [0]
                       [0 1]      [1 1]      [2]
              p(c_3) = [0 0] x1 + [0 4] x2 + [0]
                       [0 1]      [1 0]      [1]
              p(c_4) = [0 1] x1 + [1]           
                       [4 0]      [0]           
              p(c_5) = [1 0] x1 + [0]           
                       [4 2]      [1]           
              p(c_6) = [0 0] x1 + [4]           
                       [4 1]      [1]           
              p(c_7) = [2 1] x1 + [4]           
                       [0 0]      [0]           
              p(c_8) = [1 0] x1 + [1 0] x2 + [0]
                       [0 0]      [0 0]      [0]
              p(c_9) = [1 1] x1 + [0]           
                       [0 0]      [0]           
             p(c_10) = [1 2] x1 + [0]           
                       [1 0]      [1]           
             p(c_11) = [4]                      
                       [0]                      
        
        Following rules are strictly oriented:
        proper#(f(X1,X2)) = [0 1] X1 + [0 1] X2 + [1]   
                            [0 0]      [0 0]      [0]   
                          > [0 1] X1 + [0 1] X2 + [0]   
                            [0 0]      [0 0]      [0]   
                          = c_8(proper#(X1),proper#(X2))
        
        
        Following rules are (at-least) weakly oriented:
            proper#(g(X)) =  [0 1] X + [0]            
                             [0 0]     [0]            
                          >= [0 1] X + [0]            
                             [0 0]     [0]            
                          =  c_9(proper#(X))          
        
            top#(mark(X)) =  [0 2] X + [2]            
                             [0 0]     [2]            
                          >= [0 1] X + [0]            
                             [0 0]     [0]            
                          =  proper#(X)               
        
            top#(mark(X)) =  [0 2] X + [2]            
                             [0 0]     [2]            
                          >= [0 2] X + [2]            
                             [0 0]     [2]            
                          =  top#(proper(X))          
        
              top#(ok(X)) =  [2 8] X + [14]           
                             [0 0]     [2]            
                          >= [2 8] X + [2]            
                             [0 0]     [2]            
                          =  top#(active(X))          
        
         active(f(X1,X2)) =  [2 0] X1 + [1 0] X2 + [0]
                             [0 4]      [0 4]      [4]
                          >= [2 0] X1 + [1 0] X2 + [0]
                             [0 4]      [0 1]      [1]
                          =  f(active(X1),X2)         
        
        active(f(g(X),Y)) =  [2 0] X + [1 0] Y + [0]  
                             [0 4]     [0 4]     [4]  
                          >= [0 0] X + [0 0] Y + [0]  
                             [0 2]     [0 1]     [2]  
                          =  mark(f(X,f(g(X),Y)))     
        
             active(g(X)) =  [1 0] X + [0]            
                             [0 4]     [0]            
                          >= [1 0] X + [0]            
                             [0 4]     [0]            
                          =  g(active(X))             
        
           f(mark(X1),X2) =  [0 0] X1 + [1 0] X2 + [0]
                             [0 1]      [0 1]      [1]
                          >= [0 0] X1 + [0 0] X2 + [0]
                             [0 1]      [0 1]      [1]
                          =  mark(f(X1,X2))           
        
         f(ok(X1),ok(X2)) =  [2 8] X1 + [1 4] X2 + [6]
                             [0 0]      [0 0]      [9]
                          >= [2 4] X1 + [1 4] X2 + [6]
                             [0 0]      [0 0]      [4]
                          =  ok(f(X1,X2))             
        
               g(mark(X)) =  [0 0] X + [0]            
                             [0 1]     [0]            
                          >= [0 0] X + [0]            
                             [0 1]     [0]            
                          =  mark(g(X))               
        
                 g(ok(X)) =  [1 4] X + [2]            
                             [0 0]     [4]            
                          >= [1 4] X + [2]            
                             [0 0]     [4]            
                          =  ok(g(X))                 
        
         proper(f(X1,X2)) =  [0 0] X1 + [0 0] X2 + [0]
                             [0 1]      [0 1]      [1]
                          >= [0 0] X1 + [0 0] X2 + [0]
                             [0 1]      [0 1]      [1]
                          =  f(proper(X1),proper(X2)) 
        
             proper(g(X)) =  [0 0] X + [0]            
                             [0 1]     [0]            
                          >= [0 0] X + [0]            
                             [0 1]     [0]            
                          =  g(proper(X))             
        
******* Step 1.b:3.b:3.a:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(proper#(X))
            top#(mark(X)) -> proper#(X)
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/2,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 1.b:3.b:3.a:1.b:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(proper#(X))
            top#(mark(X)) -> proper#(X)
            top#(mark(X)) -> top#(proper(X))
            top#(ok(X)) -> top#(active(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/2,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2))
             -->_2 proper#(g(X)) -> c_9(proper#(X)):2
             -->_1 proper#(g(X)) -> c_9(proper#(X)):2
             -->_2 proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2)):1
             -->_1 proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2)):1
          
          2:W:proper#(g(X)) -> c_9(proper#(X))
             -->_1 proper#(g(X)) -> c_9(proper#(X)):2
             -->_1 proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2)):1
          
          3:W:top#(mark(X)) -> proper#(X)
             -->_1 proper#(g(X)) -> c_9(proper#(X)):2
             -->_1 proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2)):1
          
          4:W:top#(mark(X)) -> top#(proper(X))
             -->_1 top#(ok(X)) -> top#(active(X)):5
             -->_1 top#(mark(X)) -> top#(proper(X)):4
             -->_1 top#(mark(X)) -> proper#(X):3
          
          5:W:top#(ok(X)) -> top#(active(X))
             -->_1 top#(ok(X)) -> top#(active(X)):5
             -->_1 top#(mark(X)) -> top#(proper(X)):4
             -->_1 top#(mark(X)) -> proper#(X):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: top#(mark(X)) -> top#(proper(X))
          5: top#(ok(X)) -> top#(active(X))
          3: top#(mark(X)) -> proper#(X)
          1: proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2))
          2: proper#(g(X)) -> c_9(proper#(X))
******* Step 1.b:3.b:3.a:1.b:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/2,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

**** Step 1.b:3.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)))
        - Weak DPs:
            proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2))
            proper#(g(X)) -> c_9(proper#(X))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/2,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
             -->_2 proper#(g(X)) -> c_9(proper#(X)):4
             -->_2 proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2)):3
             -->_1 top#(ok(X)) -> c_11(top#(active(X))):2
             -->_1 top#(mark(X)) -> c_10(top#(proper(X)),proper#(X)):1
          
          2:S:top#(ok(X)) -> c_11(top#(active(X)))
             -->_1 top#(ok(X)) -> c_11(top#(active(X))):2
             -->_1 top#(mark(X)) -> c_10(top#(proper(X)),proper#(X)):1
          
          3:W:proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2))
             -->_2 proper#(g(X)) -> c_9(proper#(X)):4
             -->_1 proper#(g(X)) -> c_9(proper#(X)):4
             -->_2 proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2)):3
             -->_1 proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2)):3
          
          4:W:proper#(g(X)) -> c_9(proper#(X))
             -->_1 proper#(g(X)) -> c_9(proper#(X)):4
             -->_1 proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2)):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: proper#(g(X)) -> c_9(proper#(X))
          3: proper#(f(X1,X2)) -> c_8(proper#(X1),proper#(X2))
**** Step 1.b:3.b:3.b:2: SimplifyRHS WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
            top#(ok(X)) -> c_11(top#(active(X)))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/2,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:top#(mark(X)) -> c_10(top#(proper(X)),proper#(X))
             -->_1 top#(ok(X)) -> c_11(top#(active(X))):2
             -->_1 top#(mark(X)) -> c_10(top#(proper(X)),proper#(X)):1
          
          2:S:top#(ok(X)) -> c_11(top#(active(X)))
             -->_1 top#(ok(X)) -> c_11(top#(active(X))):2
             -->_1 top#(mark(X)) -> c_10(top#(proper(X)),proper#(X)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          top#(mark(X)) -> c_10(top#(proper(X)))
**** Step 1.b:3.b:3.b:3: PredecessorEstimationCP WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            top#(mark(X)) -> c_10(top#(proper(X)))
            top#(ok(X)) -> c_11(top#(active(X)))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/1,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: top#(ok(X)) -> c_11(top#(active(X)))
          
        The strictly oriented rules are moved into the weak component.
***** Step 1.b:3.b:3.b:3.a:1: NaturalMI WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            top#(mark(X)) -> c_10(top#(proper(X)))
            top#(ok(X)) -> c_11(top#(active(X)))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/1,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_10) = {1},
          uargs(c_11) = {1}
        
        Following symbols are considered usable:
          {active,f,g,proper,active#,f#,g#,proper#,top#}
        TcT has computed the following interpretation:
           p(active) = [0]                  
                p(f) = [4] x1 + [0]         
                p(g) = [2] x1 + [0]         
             p(mark) = [0]                  
               p(ok) = [1]                  
           p(proper) = [0]                  
              p(top) = [2] x1 + [1]         
          p(active#) = [4]                  
               p(f#) = [2] x1 + [1] x2 + [1]
               p(g#) = [4] x1 + [1]         
          p(proper#) = [2]                  
             p(top#) = [4] x1 + [0]         
              p(c_1) = [1] x1 + [0]         
              p(c_2) = [1] x2 + [1] x3 + [1]
              p(c_3) = [1] x1 + [1] x2 + [1]
              p(c_4) = [1] x1 + [1]         
              p(c_5) = [1] x1 + [4]         
              p(c_6) = [1]                  
              p(c_7) = [1] x1 + [0]         
              p(c_8) = [1] x1 + [1]         
              p(c_9) = [1] x1 + [1]         
             p(c_10) = [8] x1 + [0]         
             p(c_11) = [8] x1 + [0]         
        
        Following rules are strictly oriented:
        top#(ok(X)) = [4]                  
                    > [0]                  
                    = c_11(top#(active(X)))
        
        
        Following rules are (at-least) weakly oriented:
            top#(mark(X)) =  [0]                     
                          >= [0]                     
                          =  c_10(top#(proper(X)))   
        
         active(f(X1,X2)) =  [0]                     
                          >= [0]                     
                          =  f(active(X1),X2)        
        
        active(f(g(X),Y)) =  [0]                     
                          >= [0]                     
                          =  mark(f(X,f(g(X),Y)))    
        
             active(g(X)) =  [0]                     
                          >= [0]                     
                          =  g(active(X))            
        
           f(mark(X1),X2) =  [0]                     
                          >= [0]                     
                          =  mark(f(X1,X2))          
        
         f(ok(X1),ok(X2)) =  [4]                     
                          >= [1]                     
                          =  ok(f(X1,X2))            
        
               g(mark(X)) =  [0]                     
                          >= [0]                     
                          =  mark(g(X))              
        
                 g(ok(X)) =  [2]                     
                          >= [1]                     
                          =  ok(g(X))                
        
         proper(f(X1,X2)) =  [0]                     
                          >= [0]                     
                          =  f(proper(X1),proper(X2))
        
             proper(g(X)) =  [0]                     
                          >= [0]                     
                          =  g(proper(X))            
        
***** Step 1.b:3.b:3.b:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            top#(mark(X)) -> c_10(top#(proper(X)))
        - Weak DPs:
            top#(ok(X)) -> c_11(top#(active(X)))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/1,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:3.b:3.b:3.b:1: PredecessorEstimationCP WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            top#(mark(X)) -> c_10(top#(proper(X)))
        - Weak DPs:
            top#(ok(X)) -> c_11(top#(active(X)))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/1,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: top#(mark(X)) -> c_10(top#(proper(X)))
          
        The strictly oriented rules are moved into the weak component.
****** Step 1.b:3.b:3.b:3.b:1.a:1: NaturalMI WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            top#(mark(X)) -> c_10(top#(proper(X)))
        - Weak DPs:
            top#(ok(X)) -> c_11(top#(active(X)))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/1,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_10) = {1},
          uargs(c_11) = {1}
        
        Following symbols are considered usable:
          {active,f,g,proper,active#,f#,g#,proper#,top#}
        TcT has computed the following interpretation:
           p(active) = [1]                  
                p(f) = [1] x1 + [0]         
                p(g) = [1] x1 + [0]         
             p(mark) = [1]                  
               p(ok) = [8]                  
           p(proper) = [0]                  
              p(top) = [0]                  
          p(active#) = [0]                  
               p(f#) = [1] x1 + [2] x2 + [0]
               p(g#) = [0]                  
          p(proper#) = [2] x1 + [0]         
             p(top#) = [2] x1 + [0]         
              p(c_1) = [1] x2 + [0]         
              p(c_2) = [1] x2 + [4] x3 + [2]
              p(c_3) = [1] x1 + [1] x2 + [1]
              p(c_4) = [1] x1 + [1]         
              p(c_5) = [0]                  
              p(c_6) = [1] x1 + [2]         
              p(c_7) = [8] x1 + [8]         
              p(c_8) = [1]                  
              p(c_9) = [1]                  
             p(c_10) = [8] x1 + [1]         
             p(c_11) = [4] x1 + [6]         
        
        Following rules are strictly oriented:
        top#(mark(X)) = [2]                  
                      > [1]                  
                      = c_10(top#(proper(X)))
        
        
        Following rules are (at-least) weakly oriented:
              top#(ok(X)) =  [16]                    
                          >= [14]                    
                          =  c_11(top#(active(X)))   
        
         active(f(X1,X2)) =  [1]                     
                          >= [1]                     
                          =  f(active(X1),X2)        
        
        active(f(g(X),Y)) =  [1]                     
                          >= [1]                     
                          =  mark(f(X,f(g(X),Y)))    
        
             active(g(X)) =  [1]                     
                          >= [1]                     
                          =  g(active(X))            
        
           f(mark(X1),X2) =  [1]                     
                          >= [1]                     
                          =  mark(f(X1,X2))          
        
         f(ok(X1),ok(X2)) =  [8]                     
                          >= [8]                     
                          =  ok(f(X1,X2))            
        
               g(mark(X)) =  [1]                     
                          >= [1]                     
                          =  mark(g(X))              
        
                 g(ok(X)) =  [8]                     
                          >= [8]                     
                          =  ok(g(X))                
        
         proper(f(X1,X2)) =  [0]                     
                          >= [0]                     
                          =  f(proper(X1),proper(X2))
        
             proper(g(X)) =  [0]                     
                          >= [0]                     
                          =  g(proper(X))            
        
****** Step 1.b:3.b:3.b:3.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            top#(mark(X)) -> c_10(top#(proper(X)))
            top#(ok(X)) -> c_11(top#(active(X)))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/1,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

****** Step 1.b:3.b:3.b:3.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            top#(mark(X)) -> c_10(top#(proper(X)))
            top#(ok(X)) -> c_11(top#(active(X)))
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/1,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:top#(mark(X)) -> c_10(top#(proper(X)))
             -->_1 top#(ok(X)) -> c_11(top#(active(X))):2
             -->_1 top#(mark(X)) -> c_10(top#(proper(X))):1
          
          2:W:top#(ok(X)) -> c_11(top#(active(X)))
             -->_1 top#(ok(X)) -> c_11(top#(active(X))):2
             -->_1 top#(mark(X)) -> c_10(top#(proper(X))):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: top#(mark(X)) -> c_10(top#(proper(X)))
          2: top#(ok(X)) -> c_11(top#(active(X)))
****** Step 1.b:3.b:3.b:3.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            active(f(X1,X2)) -> f(active(X1),X2)
            active(f(g(X),Y)) -> mark(f(X,f(g(X),Y)))
            active(g(X)) -> g(active(X))
            f(mark(X1),X2) -> mark(f(X1,X2))
            f(ok(X1),ok(X2)) -> ok(f(X1,X2))
            g(mark(X)) -> mark(g(X))
            g(ok(X)) -> ok(g(X))
            proper(f(X1,X2)) -> f(proper(X1),proper(X2))
            proper(g(X)) -> g(proper(X))
        - Signature:
            {active/1,f/2,g/1,proper/1,top/1,active#/1,f#/2,g#/1,proper#/1,top#/1} / {mark/1,ok/1,c_1/2,c_2/3,c_3/2
            ,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/1,c_10/1,c_11/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active#,f#,g#,proper#,top#} and constructors {mark,ok}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))