* Step 1: Sum WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__s(X)) -> s(X)
            div(0(),n__s(Y)) -> 0()
            div(s(X),n__s(Y)) -> if(geq(X,activate(Y)),n__s(div(minus(X,activate(Y)),n__s(activate(Y)))),n__0())
            geq(X,n__0()) -> true()
            geq(n__0(),n__s(Y)) -> false()
            geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            minus(n__0(),Y) -> 0()
            minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,div,geq,if,minus,s} and constructors {false
            ,n__0,n__s,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: InnermostRuleRemoval WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__s(X)) -> s(X)
            div(0(),n__s(Y)) -> 0()
            div(s(X),n__s(Y)) -> if(geq(X,activate(Y)),n__s(div(minus(X,activate(Y)),n__s(activate(Y)))),n__0())
            geq(X,n__0()) -> true()
            geq(n__0(),n__s(Y)) -> false()
            geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            minus(n__0(),Y) -> 0()
            minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,div,geq,if,minus,s} and constructors {false
            ,n__0,n__s,true}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          div(0(),n__s(Y)) -> 0()
          div(s(X),n__s(Y)) -> if(geq(X,activate(Y)),n__s(div(minus(X,activate(Y)),n__s(activate(Y)))),n__0())
        All above mentioned rules can be savely removed.
* Step 3: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__s(X)) -> s(X)
            geq(X,n__0()) -> true()
            geq(n__0(),n__s(Y)) -> false()
            geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            minus(n__0(),Y) -> 0()
            minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,div,geq,if,minus,s} and constructors {false
            ,n__0,n__s,true}
    + Applied Processor:
        Bounds {initialAutomaton = minimal, enrichment = match}
    + Details:
        The problem is match-bounded by 4.
        The enriched problem is compatible with follwoing automaton.
          0_0() -> 1
          0_1() -> 1
          0_1() -> 3
          0_1() -> 4
          0_1() -> 5
          0_1() -> 6
          0_1() -> 7
          0_1() -> 8
          0_2() -> 1
          0_3() -> 1
          activate_0(2) -> 1
          activate_1(2) -> 1
          activate_1(2) -> 3
          activate_1(2) -> 4
          activate_2(2) -> 5
          activate_2(2) -> 6
          activate_3(2) -> 7
          activate_3(2) -> 8
          div_0(2,2) -> 1
          false_0() -> 1
          false_0() -> 2
          false_0() -> 3
          false_0() -> 4
          false_0() -> 5
          false_0() -> 6
          false_0() -> 7
          false_0() -> 8
          false_1() -> 1
          false_2() -> 1
          false_3() -> 1
          geq_0(2,2) -> 1
          geq_1(3,4) -> 1
          geq_2(5,6) -> 1
          geq_3(7,8) -> 1
          if_0(2,2,2) -> 1
          minus_0(2,2) -> 1
          minus_1(4,4) -> 1
          minus_2(6,6) -> 1
          minus_3(8,8) -> 1
          n__0_0() -> 1
          n__0_0() -> 2
          n__0_0() -> 3
          n__0_0() -> 4
          n__0_0() -> 5
          n__0_0() -> 6
          n__0_0() -> 7
          n__0_0() -> 8
          n__0_1() -> 1
          n__0_2() -> 1
          n__0_2() -> 3
          n__0_2() -> 4
          n__0_2() -> 5
          n__0_2() -> 6
          n__0_2() -> 7
          n__0_2() -> 8
          n__0_3() -> 1
          n__0_4() -> 1
          n__s_0(2) -> 1
          n__s_0(2) -> 2
          n__s_0(2) -> 3
          n__s_0(2) -> 4
          n__s_0(2) -> 5
          n__s_0(2) -> 6
          n__s_0(2) -> 7
          n__s_0(2) -> 8
          n__s_1(2) -> 1
          n__s_2(2) -> 1
          n__s_2(2) -> 3
          n__s_2(2) -> 4
          n__s_2(2) -> 5
          n__s_2(2) -> 6
          n__s_2(2) -> 7
          n__s_2(2) -> 8
          s_0(2) -> 1
          s_1(2) -> 1
          s_1(2) -> 3
          s_1(2) -> 4
          s_1(2) -> 5
          s_1(2) -> 6
          s_1(2) -> 7
          s_1(2) -> 8
          true_0() -> 1
          true_0() -> 2
          true_0() -> 3
          true_0() -> 4
          true_0() -> 5
          true_0() -> 6
          true_0() -> 7
          true_0() -> 8
          true_1() -> 1
          true_2() -> 1
          true_3() -> 1
          2 -> 1
          2 -> 3
          2 -> 4
          2 -> 5
          2 -> 6
          2 -> 7
          2 -> 8
* Step 4: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__s(X)) -> s(X)
            geq(X,n__0()) -> true()
            geq(n__0(),n__s(Y)) -> false()
            geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            minus(n__0(),Y) -> 0()
            minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,div,geq,if,minus,s} and constructors {false
            ,n__0,n__s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))