* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__div(X1,X2) -> div(X1,X2)
            a__div(0(),s(Y)) -> 0()
            a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
            a__geq(X,0()) -> true()
            a__geq(X1,X2) -> geq(X1,X2)
            a__geq(0(),s(Y)) -> false()
            a__geq(s(X),s(Y)) -> a__geq(X,Y)
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
            a__minus(X1,X2) -> minus(X1,X2)
            a__minus(0(),Y) -> 0()
            a__minus(s(X),s(Y)) -> a__minus(X,Y)
            mark(0()) -> 0()
            mark(div(X1,X2)) -> a__div(mark(X1),X2)
            mark(false()) -> false()
            mark(geq(X1,X2)) -> a__geq(X1,X2)
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
            mark(minus(X1,X2)) -> a__minus(X1,X2)
            mark(s(X)) -> s(mark(X))
            mark(true()) -> true()
        - Signature:
            {a__div/2,a__geq/2,a__if/3,a__minus/2,mark/1} / {0/0,div/2,false/0,geq/2,if/3,minus/2,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__div,a__geq,a__if,a__minus,mark} and constructors {0
            ,div,false,geq,if,minus,s,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            a__div(X1,X2) -> div(X1,X2)
            a__div(0(),s(Y)) -> 0()
            a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
            a__geq(X,0()) -> true()
            a__geq(X1,X2) -> geq(X1,X2)
            a__geq(0(),s(Y)) -> false()
            a__geq(s(X),s(Y)) -> a__geq(X,Y)
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
            a__minus(X1,X2) -> minus(X1,X2)
            a__minus(0(),Y) -> 0()
            a__minus(s(X),s(Y)) -> a__minus(X,Y)
            mark(0()) -> 0()
            mark(div(X1,X2)) -> a__div(mark(X1),X2)
            mark(false()) -> false()
            mark(geq(X1,X2)) -> a__geq(X1,X2)
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
            mark(minus(X1,X2)) -> a__minus(X1,X2)
            mark(s(X)) -> s(mark(X))
            mark(true()) -> true()
        - Signature:
            {a__div/2,a__geq/2,a__if/3,a__minus/2,mark/1} / {0/0,div/2,false/0,geq/2,if/3,minus/2,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__div,a__geq,a__if,a__minus,mark} and constructors {0
            ,div,false,geq,if,minus,s,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          a__geq(x,y){x -> s(x),y -> s(y)} =
            a__geq(s(x),s(y)) ->^+ a__geq(x,y)
              = C[a__geq(x,y) = a__geq(x,y){}]

** Step 1.b:1: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__div(X1,X2) -> div(X1,X2)
            a__div(0(),s(Y)) -> 0()
            a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
            a__geq(X,0()) -> true()
            a__geq(X1,X2) -> geq(X1,X2)
            a__geq(0(),s(Y)) -> false()
            a__geq(s(X),s(Y)) -> a__geq(X,Y)
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
            a__minus(X1,X2) -> minus(X1,X2)
            a__minus(0(),Y) -> 0()
            a__minus(s(X),s(Y)) -> a__minus(X,Y)
            mark(0()) -> 0()
            mark(div(X1,X2)) -> a__div(mark(X1),X2)
            mark(false()) -> false()
            mark(geq(X1,X2)) -> a__geq(X1,X2)
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
            mark(minus(X1,X2)) -> a__minus(X1,X2)
            mark(s(X)) -> s(mark(X))
            mark(true()) -> true()
        - Signature:
            {a__div/2,a__geq/2,a__if/3,a__minus/2,mark/1} / {0/0,div/2,false/0,geq/2,if/3,minus/2,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__div,a__geq,a__if,a__minus,mark} and constructors {0
            ,div,false,geq,if,minus,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__div) = {1},
            uargs(a__if) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]         
              p(a__div) = [1] x1 + [1]
              p(a__geq) = [0]         
               p(a__if) = [1] x1 + [3]
            p(a__minus) = [0]         
                 p(div) = [0]         
               p(false) = [0]         
                 p(geq) = [0]         
                  p(if) = [1] x1 + [0]
                p(mark) = [0]         
               p(minus) = [0]         
                   p(s) = [1] x1 + [0]
                p(true) = [0]         
          
          Following rules are strictly oriented:
               a__div(X1,X2) = [1] X1 + [1]
                             > [0]         
                             = div(X1,X2)  
          
            a__div(0(),s(Y)) = [1]         
                             > [0]         
                             = 0()         
          
             a__if(X1,X2,X3) = [1] X1 + [3]
                             > [1] X1 + [0]
                             = if(X1,X2,X3)
          
          a__if(false(),X,Y) = [3]         
                             > [0]         
                             = mark(Y)     
          
           a__if(true(),X,Y) = [3]         
                             > [0]         
                             = mark(X)     
          
          
          Following rules are (at-least) weakly oriented:
            a__div(s(X),s(Y)) =  [1] X + [1]                                   
                              >= [3]                                           
                              =  a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
          
                a__geq(X,0()) =  [0]                                           
                              >= [0]                                           
                              =  true()                                        
          
                a__geq(X1,X2) =  [0]                                           
                              >= [0]                                           
                              =  geq(X1,X2)                                    
          
             a__geq(0(),s(Y)) =  [0]                                           
                              >= [0]                                           
                              =  false()                                       
          
            a__geq(s(X),s(Y)) =  [0]                                           
                              >= [0]                                           
                              =  a__geq(X,Y)                                   
          
              a__minus(X1,X2) =  [0]                                           
                              >= [0]                                           
                              =  minus(X1,X2)                                  
          
              a__minus(0(),Y) =  [0]                                           
                              >= [0]                                           
                              =  0()                                           
          
          a__minus(s(X),s(Y)) =  [0]                                           
                              >= [0]                                           
                              =  a__minus(X,Y)                                 
          
                    mark(0()) =  [0]                                           
                              >= [0]                                           
                              =  0()                                           
          
             mark(div(X1,X2)) =  [0]                                           
                              >= [1]                                           
                              =  a__div(mark(X1),X2)                           
          
                mark(false()) =  [0]                                           
                              >= [0]                                           
                              =  false()                                       
          
             mark(geq(X1,X2)) =  [0]                                           
                              >= [0]                                           
                              =  a__geq(X1,X2)                                 
          
           mark(if(X1,X2,X3)) =  [0]                                           
                              >= [3]                                           
                              =  a__if(mark(X1),X2,X3)                         
          
           mark(minus(X1,X2)) =  [0]                                           
                              >= [0]                                           
                              =  a__minus(X1,X2)                               
          
                   mark(s(X)) =  [0]                                           
                              >= [0]                                           
                              =  s(mark(X))                                    
          
                 mark(true()) =  [0]                                           
                              >= [0]                                           
                              =  true()                                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:2: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
            a__geq(X,0()) -> true()
            a__geq(X1,X2) -> geq(X1,X2)
            a__geq(0(),s(Y)) -> false()
            a__geq(s(X),s(Y)) -> a__geq(X,Y)
            a__minus(X1,X2) -> minus(X1,X2)
            a__minus(0(),Y) -> 0()
            a__minus(s(X),s(Y)) -> a__minus(X,Y)
            mark(0()) -> 0()
            mark(div(X1,X2)) -> a__div(mark(X1),X2)
            mark(false()) -> false()
            mark(geq(X1,X2)) -> a__geq(X1,X2)
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
            mark(minus(X1,X2)) -> a__minus(X1,X2)
            mark(s(X)) -> s(mark(X))
            mark(true()) -> true()
        - Weak TRS:
            a__div(X1,X2) -> div(X1,X2)
            a__div(0(),s(Y)) -> 0()
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
        - Signature:
            {a__div/2,a__geq/2,a__if/3,a__minus/2,mark/1} / {0/0,div/2,false/0,geq/2,if/3,minus/2,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__div,a__geq,a__if,a__minus,mark} and constructors {0
            ,div,false,geq,if,minus,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__div) = {1},
            uargs(a__if) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [2]         
              p(a__div) = [1] x1 + [7]
              p(a__geq) = [6]         
               p(a__if) = [1] x1 + [4]
            p(a__minus) = [0]         
                 p(div) = [1] x1 + [5]
               p(false) = [7]         
                 p(geq) = [0]         
                  p(if) = [1] x1 + [1]
                p(mark) = [2]         
               p(minus) = [1]         
                   p(s) = [1] x1 + [0]
                p(true) = [5]         
          
          Following rules are strictly oriented:
               a__geq(X,0()) = [6]            
                             > [5]            
                             = true()         
          
               a__geq(X1,X2) = [6]            
                             > [0]            
                             = geq(X1,X2)     
          
          mark(minus(X1,X2)) = [2]            
                             > [0]            
                             = a__minus(X1,X2)
          
          
          Following rules are (at-least) weakly oriented:
                a__div(X1,X2) =  [1] X1 + [7]                                  
                              >= [1] X1 + [5]                                  
                              =  div(X1,X2)                                    
          
             a__div(0(),s(Y)) =  [9]                                           
                              >= [2]                                           
                              =  0()                                           
          
            a__div(s(X),s(Y)) =  [1] X + [7]                                   
                              >= [10]                                          
                              =  a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
          
             a__geq(0(),s(Y)) =  [6]                                           
                              >= [7]                                           
                              =  false()                                       
          
            a__geq(s(X),s(Y)) =  [6]                                           
                              >= [6]                                           
                              =  a__geq(X,Y)                                   
          
              a__if(X1,X2,X3) =  [1] X1 + [4]                                  
                              >= [1] X1 + [1]                                  
                              =  if(X1,X2,X3)                                  
          
           a__if(false(),X,Y) =  [11]                                          
                              >= [2]                                           
                              =  mark(Y)                                       
          
            a__if(true(),X,Y) =  [9]                                           
                              >= [2]                                           
                              =  mark(X)                                       
          
              a__minus(X1,X2) =  [0]                                           
                              >= [1]                                           
                              =  minus(X1,X2)                                  
          
              a__minus(0(),Y) =  [0]                                           
                              >= [2]                                           
                              =  0()                                           
          
          a__minus(s(X),s(Y)) =  [0]                                           
                              >= [0]                                           
                              =  a__minus(X,Y)                                 
          
                    mark(0()) =  [2]                                           
                              >= [2]                                           
                              =  0()                                           
          
             mark(div(X1,X2)) =  [2]                                           
                              >= [9]                                           
                              =  a__div(mark(X1),X2)                           
          
                mark(false()) =  [2]                                           
                              >= [7]                                           
                              =  false()                                       
          
             mark(geq(X1,X2)) =  [2]                                           
                              >= [6]                                           
                              =  a__geq(X1,X2)                                 
          
           mark(if(X1,X2,X3)) =  [2]                                           
                              >= [6]                                           
                              =  a__if(mark(X1),X2,X3)                         
          
                   mark(s(X)) =  [2]                                           
                              >= [2]                                           
                              =  s(mark(X))                                    
          
                 mark(true()) =  [2]                                           
                              >= [5]                                           
                              =  true()                                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:3: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
            a__geq(0(),s(Y)) -> false()
            a__geq(s(X),s(Y)) -> a__geq(X,Y)
            a__minus(X1,X2) -> minus(X1,X2)
            a__minus(0(),Y) -> 0()
            a__minus(s(X),s(Y)) -> a__minus(X,Y)
            mark(0()) -> 0()
            mark(div(X1,X2)) -> a__div(mark(X1),X2)
            mark(false()) -> false()
            mark(geq(X1,X2)) -> a__geq(X1,X2)
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
            mark(s(X)) -> s(mark(X))
            mark(true()) -> true()
        - Weak TRS:
            a__div(X1,X2) -> div(X1,X2)
            a__div(0(),s(Y)) -> 0()
            a__geq(X,0()) -> true()
            a__geq(X1,X2) -> geq(X1,X2)
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
            mark(minus(X1,X2)) -> a__minus(X1,X2)
        - Signature:
            {a__div/2,a__geq/2,a__if/3,a__minus/2,mark/1} / {0/0,div/2,false/0,geq/2,if/3,minus/2,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__div,a__geq,a__if,a__minus,mark} and constructors {0
            ,div,false,geq,if,minus,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__div) = {1},
            uargs(a__if) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]         
              p(a__div) = [1] x1 + [0]
              p(a__geq) = [0]         
               p(a__if) = [1] x1 + [1]
            p(a__minus) = [1]         
                 p(div) = [0]         
               p(false) = [0]         
                 p(geq) = [0]         
                  p(if) = [1]         
                p(mark) = [1]         
               p(minus) = [0]         
                   p(s) = [1] x1 + [0]
                p(true) = [0]         
          
          Following rules are strictly oriented:
           a__minus(X1,X2) = [1]          
                           > [0]          
                           = minus(X1,X2) 
          
           a__minus(0(),Y) = [1]          
                           > [0]          
                           = 0()          
          
                 mark(0()) = [1]          
                           > [0]          
                           = 0()          
          
             mark(false()) = [1]          
                           > [0]          
                           = false()      
          
          mark(geq(X1,X2)) = [1]          
                           > [0]          
                           = a__geq(X1,X2)
          
              mark(true()) = [1]          
                           > [0]          
                           = true()       
          
          
          Following rules are (at-least) weakly oriented:
                a__div(X1,X2) =  [1] X1 + [0]                                  
                              >= [0]                                           
                              =  div(X1,X2)                                    
          
             a__div(0(),s(Y)) =  [0]                                           
                              >= [0]                                           
                              =  0()                                           
          
            a__div(s(X),s(Y)) =  [1] X + [0]                                   
                              >= [1]                                           
                              =  a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
          
                a__geq(X,0()) =  [0]                                           
                              >= [0]                                           
                              =  true()                                        
          
                a__geq(X1,X2) =  [0]                                           
                              >= [0]                                           
                              =  geq(X1,X2)                                    
          
             a__geq(0(),s(Y)) =  [0]                                           
                              >= [0]                                           
                              =  false()                                       
          
            a__geq(s(X),s(Y)) =  [0]                                           
                              >= [0]                                           
                              =  a__geq(X,Y)                                   
          
              a__if(X1,X2,X3) =  [1] X1 + [1]                                  
                              >= [1]                                           
                              =  if(X1,X2,X3)                                  
          
           a__if(false(),X,Y) =  [1]                                           
                              >= [1]                                           
                              =  mark(Y)                                       
          
            a__if(true(),X,Y) =  [1]                                           
                              >= [1]                                           
                              =  mark(X)                                       
          
          a__minus(s(X),s(Y)) =  [1]                                           
                              >= [1]                                           
                              =  a__minus(X,Y)                                 
          
             mark(div(X1,X2)) =  [1]                                           
                              >= [1]                                           
                              =  a__div(mark(X1),X2)                           
          
           mark(if(X1,X2,X3)) =  [1]                                           
                              >= [2]                                           
                              =  a__if(mark(X1),X2,X3)                         
          
           mark(minus(X1,X2)) =  [1]                                           
                              >= [1]                                           
                              =  a__minus(X1,X2)                               
          
                   mark(s(X)) =  [1]                                           
                              >= [1]                                           
                              =  s(mark(X))                                    
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:4: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
            a__geq(0(),s(Y)) -> false()
            a__geq(s(X),s(Y)) -> a__geq(X,Y)
            a__minus(s(X),s(Y)) -> a__minus(X,Y)
            mark(div(X1,X2)) -> a__div(mark(X1),X2)
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
            mark(s(X)) -> s(mark(X))
        - Weak TRS:
            a__div(X1,X2) -> div(X1,X2)
            a__div(0(),s(Y)) -> 0()
            a__geq(X,0()) -> true()
            a__geq(X1,X2) -> geq(X1,X2)
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
            a__minus(X1,X2) -> minus(X1,X2)
            a__minus(0(),Y) -> 0()
            mark(0()) -> 0()
            mark(false()) -> false()
            mark(geq(X1,X2)) -> a__geq(X1,X2)
            mark(minus(X1,X2)) -> a__minus(X1,X2)
            mark(true()) -> true()
        - Signature:
            {a__div/2,a__geq/2,a__if/3,a__minus/2,mark/1} / {0/0,div/2,false/0,geq/2,if/3,minus/2,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__div,a__geq,a__if,a__minus,mark} and constructors {0
            ,div,false,geq,if,minus,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__div) = {1},
            uargs(a__if) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]         
              p(a__div) = [1] x1 + [1]
              p(a__geq) = [0]         
               p(a__if) = [1] x1 + [0]
            p(a__minus) = [0]         
                 p(div) = [0]         
               p(false) = [0]         
                 p(geq) = [0]         
                  p(if) = [0]         
                p(mark) = [0]         
               p(minus) = [0]         
                   p(s) = [1] x1 + [1]
                p(true) = [0]         
          
          Following rules are strictly oriented:
          a__div(s(X),s(Y)) = [1] X + [2]                                   
                            > [0]                                           
                            = a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
          
          
          Following rules are (at-least) weakly oriented:
                a__div(X1,X2) =  [1] X1 + [1]         
                              >= [0]                  
                              =  div(X1,X2)           
          
             a__div(0(),s(Y)) =  [1]                  
                              >= [0]                  
                              =  0()                  
          
                a__geq(X,0()) =  [0]                  
                              >= [0]                  
                              =  true()               
          
                a__geq(X1,X2) =  [0]                  
                              >= [0]                  
                              =  geq(X1,X2)           
          
             a__geq(0(),s(Y)) =  [0]                  
                              >= [0]                  
                              =  false()              
          
            a__geq(s(X),s(Y)) =  [0]                  
                              >= [0]                  
                              =  a__geq(X,Y)          
          
              a__if(X1,X2,X3) =  [1] X1 + [0]         
                              >= [0]                  
                              =  if(X1,X2,X3)         
          
           a__if(false(),X,Y) =  [0]                  
                              >= [0]                  
                              =  mark(Y)              
          
            a__if(true(),X,Y) =  [0]                  
                              >= [0]                  
                              =  mark(X)              
          
              a__minus(X1,X2) =  [0]                  
                              >= [0]                  
                              =  minus(X1,X2)         
          
              a__minus(0(),Y) =  [0]                  
                              >= [0]                  
                              =  0()                  
          
          a__minus(s(X),s(Y)) =  [0]                  
                              >= [0]                  
                              =  a__minus(X,Y)        
          
                    mark(0()) =  [0]                  
                              >= [0]                  
                              =  0()                  
          
             mark(div(X1,X2)) =  [0]                  
                              >= [1]                  
                              =  a__div(mark(X1),X2)  
          
                mark(false()) =  [0]                  
                              >= [0]                  
                              =  false()              
          
             mark(geq(X1,X2)) =  [0]                  
                              >= [0]                  
                              =  a__geq(X1,X2)        
          
           mark(if(X1,X2,X3)) =  [0]                  
                              >= [0]                  
                              =  a__if(mark(X1),X2,X3)
          
           mark(minus(X1,X2)) =  [0]                  
                              >= [0]                  
                              =  a__minus(X1,X2)      
          
                   mark(s(X)) =  [0]                  
                              >= [1]                  
                              =  s(mark(X))           
          
                 mark(true()) =  [0]                  
                              >= [0]                  
                              =  true()               
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:5: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__geq(0(),s(Y)) -> false()
            a__geq(s(X),s(Y)) -> a__geq(X,Y)
            a__minus(s(X),s(Y)) -> a__minus(X,Y)
            mark(div(X1,X2)) -> a__div(mark(X1),X2)
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
            mark(s(X)) -> s(mark(X))
        - Weak TRS:
            a__div(X1,X2) -> div(X1,X2)
            a__div(0(),s(Y)) -> 0()
            a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
            a__geq(X,0()) -> true()
            a__geq(X1,X2) -> geq(X1,X2)
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
            a__minus(X1,X2) -> minus(X1,X2)
            a__minus(0(),Y) -> 0()
            mark(0()) -> 0()
            mark(false()) -> false()
            mark(geq(X1,X2)) -> a__geq(X1,X2)
            mark(minus(X1,X2)) -> a__minus(X1,X2)
            mark(true()) -> true()
        - Signature:
            {a__div/2,a__geq/2,a__if/3,a__minus/2,mark/1} / {0/0,div/2,false/0,geq/2,if/3,minus/2,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__div,a__geq,a__if,a__minus,mark} and constructors {0
            ,div,false,geq,if,minus,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__div) = {1},
            uargs(a__if) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]         
              p(a__div) = [1] x1 + [7]
              p(a__geq) = [1]         
               p(a__if) = [1] x1 + [2]
            p(a__minus) = [1]         
                 p(div) = [1] x1 + [7]
               p(false) = [0]         
                 p(geq) = [0]         
                  p(if) = [0]         
                p(mark) = [1]         
               p(minus) = [1]         
                   p(s) = [1] x1 + [0]
                p(true) = [1]         
          
          Following rules are strictly oriented:
          a__geq(0(),s(Y)) = [1]    
                           > [0]    
                           = false()
          
          
          Following rules are (at-least) weakly oriented:
                a__div(X1,X2) =  [1] X1 + [7]                                  
                              >= [1] X1 + [7]                                  
                              =  div(X1,X2)                                    
          
             a__div(0(),s(Y)) =  [7]                                           
                              >= [0]                                           
                              =  0()                                           
          
            a__div(s(X),s(Y)) =  [1] X + [7]                                   
                              >= [3]                                           
                              =  a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
          
                a__geq(X,0()) =  [1]                                           
                              >= [1]                                           
                              =  true()                                        
          
                a__geq(X1,X2) =  [1]                                           
                              >= [0]                                           
                              =  geq(X1,X2)                                    
          
            a__geq(s(X),s(Y)) =  [1]                                           
                              >= [1]                                           
                              =  a__geq(X,Y)                                   
          
              a__if(X1,X2,X3) =  [1] X1 + [2]                                  
                              >= [0]                                           
                              =  if(X1,X2,X3)                                  
          
           a__if(false(),X,Y) =  [2]                                           
                              >= [1]                                           
                              =  mark(Y)                                       
          
            a__if(true(),X,Y) =  [3]                                           
                              >= [1]                                           
                              =  mark(X)                                       
          
              a__minus(X1,X2) =  [1]                                           
                              >= [1]                                           
                              =  minus(X1,X2)                                  
          
              a__minus(0(),Y) =  [1]                                           
                              >= [0]                                           
                              =  0()                                           
          
          a__minus(s(X),s(Y)) =  [1]                                           
                              >= [1]                                           
                              =  a__minus(X,Y)                                 
          
                    mark(0()) =  [1]                                           
                              >= [0]                                           
                              =  0()                                           
          
             mark(div(X1,X2)) =  [1]                                           
                              >= [8]                                           
                              =  a__div(mark(X1),X2)                           
          
                mark(false()) =  [1]                                           
                              >= [0]                                           
                              =  false()                                       
          
             mark(geq(X1,X2)) =  [1]                                           
                              >= [1]                                           
                              =  a__geq(X1,X2)                                 
          
           mark(if(X1,X2,X3)) =  [1]                                           
                              >= [3]                                           
                              =  a__if(mark(X1),X2,X3)                         
          
           mark(minus(X1,X2)) =  [1]                                           
                              >= [1]                                           
                              =  a__minus(X1,X2)                               
          
                   mark(s(X)) =  [1]                                           
                              >= [1]                                           
                              =  s(mark(X))                                    
          
                 mark(true()) =  [1]                                           
                              >= [1]                                           
                              =  true()                                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:6: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__geq(s(X),s(Y)) -> a__geq(X,Y)
            a__minus(s(X),s(Y)) -> a__minus(X,Y)
            mark(div(X1,X2)) -> a__div(mark(X1),X2)
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
            mark(s(X)) -> s(mark(X))
        - Weak TRS:
            a__div(X1,X2) -> div(X1,X2)
            a__div(0(),s(Y)) -> 0()
            a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
            a__geq(X,0()) -> true()
            a__geq(X1,X2) -> geq(X1,X2)
            a__geq(0(),s(Y)) -> false()
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
            a__minus(X1,X2) -> minus(X1,X2)
            a__minus(0(),Y) -> 0()
            mark(0()) -> 0()
            mark(false()) -> false()
            mark(geq(X1,X2)) -> a__geq(X1,X2)
            mark(minus(X1,X2)) -> a__minus(X1,X2)
            mark(true()) -> true()
        - Signature:
            {a__div/2,a__geq/2,a__if/3,a__minus/2,mark/1} / {0/0,div/2,false/0,geq/2,if/3,minus/2,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__div,a__geq,a__if,a__minus,mark} and constructors {0
            ,div,false,geq,if,minus,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__div) = {1},
            uargs(a__if) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                           
              p(a__div) = [1] x1 + [3]                  
              p(a__geq) = [1] x1 + [0]                  
               p(a__if) = [1] x1 + [4] x2 + [4] x3 + [0]
            p(a__minus) = [0]                           
                 p(div) = [1] x1 + [0]                  
               p(false) = [0]                           
                 p(geq) = [1] x1 + [0]                  
                  p(if) = [1] x1 + [1] x2 + [1] x3 + [0]
                p(mark) = [4] x1 + [0]                  
               p(minus) = [0]                           
                   p(s) = [1] x1 + [1]                  
                p(true) = [0]                           
          
          Following rules are strictly oriented:
          a__geq(s(X),s(Y)) = [1] X + [1]
                            > [1] X + [0]
                            = a__geq(X,Y)
          
                 mark(s(X)) = [4] X + [4]
                            > [4] X + [1]
                            = s(mark(X)) 
          
          
          Following rules are (at-least) weakly oriented:
                a__div(X1,X2) =  [1] X1 + [3]                                  
                              >= [1] X1 + [0]                                  
                              =  div(X1,X2)                                    
          
             a__div(0(),s(Y)) =  [3]                                           
                              >= [0]                                           
                              =  0()                                           
          
            a__div(s(X),s(Y)) =  [1] X + [4]                                   
                              >= [1] X + [4]                                   
                              =  a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
          
                a__geq(X,0()) =  [1] X + [0]                                   
                              >= [0]                                           
                              =  true()                                        
          
                a__geq(X1,X2) =  [1] X1 + [0]                                  
                              >= [1] X1 + [0]                                  
                              =  geq(X1,X2)                                    
          
             a__geq(0(),s(Y)) =  [0]                                           
                              >= [0]                                           
                              =  false()                                       
          
              a__if(X1,X2,X3) =  [1] X1 + [4] X2 + [4] X3 + [0]                
                              >= [1] X1 + [1] X2 + [1] X3 + [0]                
                              =  if(X1,X2,X3)                                  
          
           a__if(false(),X,Y) =  [4] X + [4] Y + [0]                           
                              >= [4] Y + [0]                                   
                              =  mark(Y)                                       
          
            a__if(true(),X,Y) =  [4] X + [4] Y + [0]                           
                              >= [4] X + [0]                                   
                              =  mark(X)                                       
          
              a__minus(X1,X2) =  [0]                                           
                              >= [0]                                           
                              =  minus(X1,X2)                                  
          
              a__minus(0(),Y) =  [0]                                           
                              >= [0]                                           
                              =  0()                                           
          
          a__minus(s(X),s(Y)) =  [0]                                           
                              >= [0]                                           
                              =  a__minus(X,Y)                                 
          
                    mark(0()) =  [0]                                           
                              >= [0]                                           
                              =  0()                                           
          
             mark(div(X1,X2)) =  [4] X1 + [0]                                  
                              >= [4] X1 + [3]                                  
                              =  a__div(mark(X1),X2)                           
          
                mark(false()) =  [0]                                           
                              >= [0]                                           
                              =  false()                                       
          
             mark(geq(X1,X2)) =  [4] X1 + [0]                                  
                              >= [1] X1 + [0]                                  
                              =  a__geq(X1,X2)                                 
          
           mark(if(X1,X2,X3)) =  [4] X1 + [4] X2 + [4] X3 + [0]                
                              >= [4] X1 + [4] X2 + [4] X3 + [0]                
                              =  a__if(mark(X1),X2,X3)                         
          
           mark(minus(X1,X2)) =  [0]                                           
                              >= [0]                                           
                              =  a__minus(X1,X2)                               
          
                 mark(true()) =  [0]                                           
                              >= [0]                                           
                              =  true()                                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:7: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__minus(s(X),s(Y)) -> a__minus(X,Y)
            mark(div(X1,X2)) -> a__div(mark(X1),X2)
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
        - Weak TRS:
            a__div(X1,X2) -> div(X1,X2)
            a__div(0(),s(Y)) -> 0()
            a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
            a__geq(X,0()) -> true()
            a__geq(X1,X2) -> geq(X1,X2)
            a__geq(0(),s(Y)) -> false()
            a__geq(s(X),s(Y)) -> a__geq(X,Y)
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
            a__minus(X1,X2) -> minus(X1,X2)
            a__minus(0(),Y) -> 0()
            mark(0()) -> 0()
            mark(false()) -> false()
            mark(geq(X1,X2)) -> a__geq(X1,X2)
            mark(minus(X1,X2)) -> a__minus(X1,X2)
            mark(s(X)) -> s(mark(X))
            mark(true()) -> true()
        - Signature:
            {a__div/2,a__geq/2,a__if/3,a__minus/2,mark/1} / {0/0,div/2,false/0,geq/2,if/3,minus/2,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__div,a__geq,a__if,a__minus,mark} and constructors {0
            ,div,false,geq,if,minus,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__div) = {1},
            uargs(a__if) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                           
              p(a__div) = [1] x1 + [2]                  
              p(a__geq) = [0]                           
               p(a__if) = [1] x1 + [4] x2 + [4] x3 + [2]
            p(a__minus) = [0]                           
                 p(div) = [1] x1 + [0]                  
               p(false) = [0]                           
                 p(geq) = [0]                           
                  p(if) = [1] x1 + [1] x2 + [1] x3 + [1]
                p(mark) = [4] x1 + [0]                  
               p(minus) = [0]                           
                   p(s) = [1] x1 + [0]                  
                p(true) = [0]                           
          
          Following rules are strictly oriented:
          mark(if(X1,X2,X3)) = [4] X1 + [4] X2 + [4] X3 + [4]
                             > [4] X1 + [4] X2 + [4] X3 + [2]
                             = a__if(mark(X1),X2,X3)         
          
          
          Following rules are (at-least) weakly oriented:
                a__div(X1,X2) =  [1] X1 + [2]                                  
                              >= [1] X1 + [0]                                  
                              =  div(X1,X2)                                    
          
             a__div(0(),s(Y)) =  [2]                                           
                              >= [0]                                           
                              =  0()                                           
          
            a__div(s(X),s(Y)) =  [1] X + [2]                                   
                              >= [2]                                           
                              =  a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
          
                a__geq(X,0()) =  [0]                                           
                              >= [0]                                           
                              =  true()                                        
          
                a__geq(X1,X2) =  [0]                                           
                              >= [0]                                           
                              =  geq(X1,X2)                                    
          
             a__geq(0(),s(Y)) =  [0]                                           
                              >= [0]                                           
                              =  false()                                       
          
            a__geq(s(X),s(Y)) =  [0]                                           
                              >= [0]                                           
                              =  a__geq(X,Y)                                   
          
              a__if(X1,X2,X3) =  [1] X1 + [4] X2 + [4] X3 + [2]                
                              >= [1] X1 + [1] X2 + [1] X3 + [1]                
                              =  if(X1,X2,X3)                                  
          
           a__if(false(),X,Y) =  [4] X + [4] Y + [2]                           
                              >= [4] Y + [0]                                   
                              =  mark(Y)                                       
          
            a__if(true(),X,Y) =  [4] X + [4] Y + [2]                           
                              >= [4] X + [0]                                   
                              =  mark(X)                                       
          
              a__minus(X1,X2) =  [0]                                           
                              >= [0]                                           
                              =  minus(X1,X2)                                  
          
              a__minus(0(),Y) =  [0]                                           
                              >= [0]                                           
                              =  0()                                           
          
          a__minus(s(X),s(Y)) =  [0]                                           
                              >= [0]                                           
                              =  a__minus(X,Y)                                 
          
                    mark(0()) =  [0]                                           
                              >= [0]                                           
                              =  0()                                           
          
             mark(div(X1,X2)) =  [4] X1 + [0]                                  
                              >= [4] X1 + [2]                                  
                              =  a__div(mark(X1),X2)                           
          
                mark(false()) =  [0]                                           
                              >= [0]                                           
                              =  false()                                       
          
             mark(geq(X1,X2)) =  [0]                                           
                              >= [0]                                           
                              =  a__geq(X1,X2)                                 
          
           mark(minus(X1,X2)) =  [0]                                           
                              >= [0]                                           
                              =  a__minus(X1,X2)                               
          
                   mark(s(X)) =  [4] X + [0]                                   
                              >= [4] X + [0]                                   
                              =  s(mark(X))                                    
          
                 mark(true()) =  [0]                                           
                              >= [0]                                           
                              =  true()                                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:8: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__minus(s(X),s(Y)) -> a__minus(X,Y)
            mark(div(X1,X2)) -> a__div(mark(X1),X2)
        - Weak TRS:
            a__div(X1,X2) -> div(X1,X2)
            a__div(0(),s(Y)) -> 0()
            a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
            a__geq(X,0()) -> true()
            a__geq(X1,X2) -> geq(X1,X2)
            a__geq(0(),s(Y)) -> false()
            a__geq(s(X),s(Y)) -> a__geq(X,Y)
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
            a__minus(X1,X2) -> minus(X1,X2)
            a__minus(0(),Y) -> 0()
            mark(0()) -> 0()
            mark(false()) -> false()
            mark(geq(X1,X2)) -> a__geq(X1,X2)
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
            mark(minus(X1,X2)) -> a__minus(X1,X2)
            mark(s(X)) -> s(mark(X))
            mark(true()) -> true()
        - Signature:
            {a__div/2,a__geq/2,a__if/3,a__minus/2,mark/1} / {0/0,div/2,false/0,geq/2,if/3,minus/2,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__div,a__geq,a__if,a__minus,mark} and constructors {0
            ,div,false,geq,if,minus,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__div) = {1},
            uargs(a__if) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [1]                           
              p(a__div) = [1] x1 + [1]                  
              p(a__geq) = [0]                           
               p(a__if) = [1] x1 + [1] x2 + [1] x3 + [0]
            p(a__minus) = [1] x1 + [0]                  
                 p(div) = [1] x1 + [0]                  
               p(false) = [0]                           
                 p(geq) = [0]                           
                  p(if) = [1] x1 + [1] x2 + [1] x3 + [0]
                p(mark) = [1] x1 + [0]                  
               p(minus) = [1] x1 + [0]                  
                   p(s) = [1] x1 + [5]                  
                p(true) = [0]                           
          
          Following rules are strictly oriented:
          a__minus(s(X),s(Y)) = [1] X + [5]  
                              > [1] X + [0]  
                              = a__minus(X,Y)
          
          
          Following rules are (at-least) weakly oriented:
               a__div(X1,X2) =  [1] X1 + [1]                                  
                             >= [1] X1 + [0]                                  
                             =  div(X1,X2)                                    
          
            a__div(0(),s(Y)) =  [2]                                           
                             >= [1]                                           
                             =  0()                                           
          
           a__div(s(X),s(Y)) =  [1] X + [6]                                   
                             >= [1] X + [6]                                   
                             =  a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
          
               a__geq(X,0()) =  [0]                                           
                             >= [0]                                           
                             =  true()                                        
          
               a__geq(X1,X2) =  [0]                                           
                             >= [0]                                           
                             =  geq(X1,X2)                                    
          
            a__geq(0(),s(Y)) =  [0]                                           
                             >= [0]                                           
                             =  false()                                       
          
           a__geq(s(X),s(Y)) =  [0]                                           
                             >= [0]                                           
                             =  a__geq(X,Y)                                   
          
             a__if(X1,X2,X3) =  [1] X1 + [1] X2 + [1] X3 + [0]                
                             >= [1] X1 + [1] X2 + [1] X3 + [0]                
                             =  if(X1,X2,X3)                                  
          
          a__if(false(),X,Y) =  [1] X + [1] Y + [0]                           
                             >= [1] Y + [0]                                   
                             =  mark(Y)                                       
          
           a__if(true(),X,Y) =  [1] X + [1] Y + [0]                           
                             >= [1] X + [0]                                   
                             =  mark(X)                                       
          
             a__minus(X1,X2) =  [1] X1 + [0]                                  
                             >= [1] X1 + [0]                                  
                             =  minus(X1,X2)                                  
          
             a__minus(0(),Y) =  [1]                                           
                             >= [1]                                           
                             =  0()                                           
          
                   mark(0()) =  [1]                                           
                             >= [1]                                           
                             =  0()                                           
          
            mark(div(X1,X2)) =  [1] X1 + [0]                                  
                             >= [1] X1 + [1]                                  
                             =  a__div(mark(X1),X2)                           
          
               mark(false()) =  [0]                                           
                             >= [0]                                           
                             =  false()                                       
          
            mark(geq(X1,X2)) =  [0]                                           
                             >= [0]                                           
                             =  a__geq(X1,X2)                                 
          
          mark(if(X1,X2,X3)) =  [1] X1 + [1] X2 + [1] X3 + [0]                
                             >= [1] X1 + [1] X2 + [1] X3 + [0]                
                             =  a__if(mark(X1),X2,X3)                         
          
          mark(minus(X1,X2)) =  [1] X1 + [0]                                  
                             >= [1] X1 + [0]                                  
                             =  a__minus(X1,X2)                               
          
                  mark(s(X)) =  [1] X + [5]                                   
                             >= [1] X + [5]                                   
                             =  s(mark(X))                                    
          
                mark(true()) =  [0]                                           
                             >= [0]                                           
                             =  true()                                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:9: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            mark(div(X1,X2)) -> a__div(mark(X1),X2)
        - Weak TRS:
            a__div(X1,X2) -> div(X1,X2)
            a__div(0(),s(Y)) -> 0()
            a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
            a__geq(X,0()) -> true()
            a__geq(X1,X2) -> geq(X1,X2)
            a__geq(0(),s(Y)) -> false()
            a__geq(s(X),s(Y)) -> a__geq(X,Y)
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
            a__minus(X1,X2) -> minus(X1,X2)
            a__minus(0(),Y) -> 0()
            a__minus(s(X),s(Y)) -> a__minus(X,Y)
            mark(0()) -> 0()
            mark(false()) -> false()
            mark(geq(X1,X2)) -> a__geq(X1,X2)
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
            mark(minus(X1,X2)) -> a__minus(X1,X2)
            mark(s(X)) -> s(mark(X))
            mark(true()) -> true()
        - Signature:
            {a__div/2,a__geq/2,a__if/3,a__minus/2,mark/1} / {0/0,div/2,false/0,geq/2,if/3,minus/2,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__div,a__geq,a__if,a__minus,mark} and constructors {0
            ,div,false,geq,if,minus,s,true}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity (Just 2))), miDimension = 3, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity (Just 2))):
        
        The following argument positions are considered usable:
          uargs(a__div) = {1},
          uargs(a__if) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {a__div,a__geq,a__if,a__minus,mark}
        TcT has computed the following interpretation:
                 p(0) = [0]                                          
                        [0]                                          
                        [0]                                          
            p(a__div) = [1 1 0]       [0 2 0]       [1]              
                        [0 0 0] x_1 + [0 1 0] x_2 + [2]              
                        [0 0 0]       [0 0 0]       [0]              
            p(a__geq) = [0]                                          
                        [0]                                          
                        [0]                                          
             p(a__if) = [1 0 0]       [2 0 0]       [2 0 0]       [0]
                        [0 0 2] x_1 + [0 1 0] x_2 + [0 1 0] x_3 + [2]
                        [0 0 0]       [0 0 0]       [0 0 0]       [0]
          p(a__minus) = [0]                                          
                        [0]                                          
                        [0]                                          
               p(div) = [1 1 0]       [0 1 0]       [1]              
                        [0 0 0] x_1 + [0 1 0] x_2 + [2]              
                        [0 0 0]       [0 0 0]       [0]              
             p(false) = [0]                                          
                        [0]                                          
                        [0]                                          
               p(geq) = [0]                                          
                        [0]                                          
                        [0]                                          
                p(if) = [1 0 0]       [1 0 0]       [1 0 0]       [0]
                        [0 0 2] x_1 + [0 1 0] x_2 + [0 1 0] x_3 + [2]
                        [0 0 0]       [0 0 0]       [0 0 0]       [0]
              p(mark) = [2 0 0]       [0]                            
                        [0 1 0] x_1 + [0]                            
                        [0 0 0]       [0]                            
             p(minus) = [0]                                          
                        [0]                                          
                        [0]                                          
                 p(s) = [1 0 0]       [0]                            
                        [0 0 1] x_1 + [2]                            
                        [0 0 0]       [0]                            
              p(true) = [0]                                          
                        [0]                                          
                        [0]                                          
        
        Following rules are strictly oriented:
        mark(div(X1,X2)) = [2 2 0]      [0 2 0]      [2]
                           [0 0 0] X1 + [0 1 0] X2 + [2]
                           [0 0 0]      [0 0 0]      [0]
                         > [2 1 0]      [0 2 0]      [1]
                           [0 0 0] X1 + [0 1 0] X2 + [2]
                           [0 0 0]      [0 0 0]      [0]
                         = a__div(mark(X1),X2)          
        
        
        Following rules are (at-least) weakly oriented:
              a__div(X1,X2) =  [1 1 0]      [0 2 0]      [1]                 
                               [0 0 0] X1 + [0 1 0] X2 + [2]                 
                               [0 0 0]      [0 0 0]      [0]                 
                            >= [1 1 0]      [0 1 0]      [1]                 
                               [0 0 0] X1 + [0 1 0] X2 + [2]                 
                               [0 0 0]      [0 0 0]      [0]                 
                            =  div(X1,X2)                                    
        
           a__div(0(),s(Y)) =  [0 0 2]     [5]                               
                               [0 0 1] Y + [4]                               
                               [0 0 0]     [0]                               
                            >= [0]                                           
                               [0]                                           
                               [0]                                           
                            =  0()                                           
        
          a__div(s(X),s(Y)) =  [1 0 1]     [0 0 2]     [7]                   
                               [0 0 0] X + [0 0 1] Y + [4]                   
                               [0 0 0]     [0 0 0]     [0]                   
                            >= [0 0 2]     [6]                               
                               [0 0 0] Y + [4]                               
                               [0 0 0]     [0]                               
                            =  a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
        
              a__geq(X,0()) =  [0]                                           
                               [0]                                           
                               [0]                                           
                            >= [0]                                           
                               [0]                                           
                               [0]                                           
                            =  true()                                        
        
              a__geq(X1,X2) =  [0]                                           
                               [0]                                           
                               [0]                                           
                            >= [0]                                           
                               [0]                                           
                               [0]                                           
                            =  geq(X1,X2)                                    
        
           a__geq(0(),s(Y)) =  [0]                                           
                               [0]                                           
                               [0]                                           
                            >= [0]                                           
                               [0]                                           
                               [0]                                           
                            =  false()                                       
        
          a__geq(s(X),s(Y)) =  [0]                                           
                               [0]                                           
                               [0]                                           
                            >= [0]                                           
                               [0]                                           
                               [0]                                           
                            =  a__geq(X,Y)                                   
        
            a__if(X1,X2,X3) =  [1 0 0]      [2 0 0]      [2 0 0]      [0]    
                               [0 0 2] X1 + [0 1 0] X2 + [0 1 0] X3 + [2]    
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]    
                            >= [1 0 0]      [1 0 0]      [1 0 0]      [0]    
                               [0 0 2] X1 + [0 1 0] X2 + [0 1 0] X3 + [2]    
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]    
                            =  if(X1,X2,X3)                                  
        
         a__if(false(),X,Y) =  [2 0 0]     [2 0 0]     [0]                   
                               [0 1 0] X + [0 1 0] Y + [2]                   
                               [0 0 0]     [0 0 0]     [0]                   
                            >= [2 0 0]     [0]                               
                               [0 1 0] Y + [0]                               
                               [0 0 0]     [0]                               
                            =  mark(Y)                                       
        
          a__if(true(),X,Y) =  [2 0 0]     [2 0 0]     [0]                   
                               [0 1 0] X + [0 1 0] Y + [2]                   
                               [0 0 0]     [0 0 0]     [0]                   
                            >= [2 0 0]     [0]                               
                               [0 1 0] X + [0]                               
                               [0 0 0]     [0]                               
                            =  mark(X)                                       
        
            a__minus(X1,X2) =  [0]                                           
                               [0]                                           
                               [0]                                           
                            >= [0]                                           
                               [0]                                           
                               [0]                                           
                            =  minus(X1,X2)                                  
        
            a__minus(0(),Y) =  [0]                                           
                               [0]                                           
                               [0]                                           
                            >= [0]                                           
                               [0]                                           
                               [0]                                           
                            =  0()                                           
        
        a__minus(s(X),s(Y)) =  [0]                                           
                               [0]                                           
                               [0]                                           
                            >= [0]                                           
                               [0]                                           
                               [0]                                           
                            =  a__minus(X,Y)                                 
        
                  mark(0()) =  [0]                                           
                               [0]                                           
                               [0]                                           
                            >= [0]                                           
                               [0]                                           
                               [0]                                           
                            =  0()                                           
        
              mark(false()) =  [0]                                           
                               [0]                                           
                               [0]                                           
                            >= [0]                                           
                               [0]                                           
                               [0]                                           
                            =  false()                                       
        
           mark(geq(X1,X2)) =  [0]                                           
                               [0]                                           
                               [0]                                           
                            >= [0]                                           
                               [0]                                           
                               [0]                                           
                            =  a__geq(X1,X2)                                 
        
         mark(if(X1,X2,X3)) =  [2 0 0]      [2 0 0]      [2 0 0]      [0]    
                               [0 0 2] X1 + [0 1 0] X2 + [0 1 0] X3 + [2]    
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]    
                            >= [2 0 0]      [2 0 0]      [2 0 0]      [0]    
                               [0 0 0] X1 + [0 1 0] X2 + [0 1 0] X3 + [2]    
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]    
                            =  a__if(mark(X1),X2,X3)                         
        
         mark(minus(X1,X2)) =  [0]                                           
                               [0]                                           
                               [0]                                           
                            >= [0]                                           
                               [0]                                           
                               [0]                                           
                            =  a__minus(X1,X2)                               
        
                 mark(s(X)) =  [2 0 0]     [0]                               
                               [0 0 1] X + [2]                               
                               [0 0 0]     [0]                               
                            >= [2 0 0]     [0]                               
                               [0 0 0] X + [2]                               
                               [0 0 0]     [0]                               
                            =  s(mark(X))                                    
        
               mark(true()) =  [0]                                           
                               [0]                                           
                               [0]                                           
                            >= [0]                                           
                               [0]                                           
                               [0]                                           
                            =  true()                                        
        
** Step 1.b:10: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            a__div(X1,X2) -> div(X1,X2)
            a__div(0(),s(Y)) -> 0()
            a__div(s(X),s(Y)) -> a__if(a__geq(X,Y),s(div(minus(X,Y),s(Y))),0())
            a__geq(X,0()) -> true()
            a__geq(X1,X2) -> geq(X1,X2)
            a__geq(0(),s(Y)) -> false()
            a__geq(s(X),s(Y)) -> a__geq(X,Y)
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
            a__minus(X1,X2) -> minus(X1,X2)
            a__minus(0(),Y) -> 0()
            a__minus(s(X),s(Y)) -> a__minus(X,Y)
            mark(0()) -> 0()
            mark(div(X1,X2)) -> a__div(mark(X1),X2)
            mark(false()) -> false()
            mark(geq(X1,X2)) -> a__geq(X1,X2)
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
            mark(minus(X1,X2)) -> a__minus(X1,X2)
            mark(s(X)) -> s(mark(X))
            mark(true()) -> true()
        - Signature:
            {a__div/2,a__geq/2,a__if/3,a__minus/2,mark/1} / {0/0,div/2,false/0,geq/2,if/3,minus/2,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__div,a__geq,a__if,a__minus,mark} and constructors {0
            ,div,false,geq,if,minus,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))