* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            active(div(X1,X2)) -> div(active(X1),X2)
            active(div(0(),s(Y))) -> mark(0())
            active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0()))
            active(geq(X,0())) -> mark(true())
            active(geq(0(),s(Y))) -> mark(false())
            active(geq(s(X),s(Y))) -> mark(geq(X,Y))
            active(if(X1,X2,X3)) -> if(active(X1),X2,X3)
            active(if(false(),X,Y)) -> mark(Y)
            active(if(true(),X,Y)) -> mark(X)
            active(minus(0(),Y)) -> mark(0())
            active(minus(s(X),s(Y))) -> mark(minus(X,Y))
            active(s(X)) -> s(active(X))
            div(mark(X1),X2) -> mark(div(X1,X2))
            div(ok(X1),ok(X2)) -> ok(div(X1,X2))
            geq(ok(X1),ok(X2)) -> ok(geq(X1,X2))
            if(mark(X1),X2,X3) -> mark(if(X1,X2,X3))
            if(ok(X1),ok(X2),ok(X3)) -> ok(if(X1,X2,X3))
            minus(ok(X1),ok(X2)) -> ok(minus(X1,X2))
            proper(0()) -> ok(0())
            proper(div(X1,X2)) -> div(proper(X1),proper(X2))
            proper(false()) -> ok(false())
            proper(geq(X1,X2)) -> geq(proper(X1),proper(X2))
            proper(if(X1,X2,X3)) -> if(proper(X1),proper(X2),proper(X3))
            proper(minus(X1,X2)) -> minus(proper(X1),proper(X2))
            proper(s(X)) -> s(proper(X))
            proper(true()) -> ok(true())
            s(mark(X)) -> mark(s(X))
            s(ok(X)) -> ok(s(X))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
        - Signature:
            {active/1,div/2,geq/2,if/3,minus/2,proper/1,s/1,top/1} / {0/0,false/0,mark/1,ok/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active,div,geq,if,minus,proper,s,top} and constructors {0
            ,false,mark,ok,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            active(div(X1,X2)) -> div(active(X1),X2)
            active(div(0(),s(Y))) -> mark(0())
            active(div(s(X),s(Y))) -> mark(if(geq(X,Y),s(div(minus(X,Y),s(Y))),0()))
            active(geq(X,0())) -> mark(true())
            active(geq(0(),s(Y))) -> mark(false())
            active(geq(s(X),s(Y))) -> mark(geq(X,Y))
            active(if(X1,X2,X3)) -> if(active(X1),X2,X3)
            active(if(false(),X,Y)) -> mark(Y)
            active(if(true(),X,Y)) -> mark(X)
            active(minus(0(),Y)) -> mark(0())
            active(minus(s(X),s(Y))) -> mark(minus(X,Y))
            active(s(X)) -> s(active(X))
            div(mark(X1),X2) -> mark(div(X1,X2))
            div(ok(X1),ok(X2)) -> ok(div(X1,X2))
            geq(ok(X1),ok(X2)) -> ok(geq(X1,X2))
            if(mark(X1),X2,X3) -> mark(if(X1,X2,X3))
            if(ok(X1),ok(X2),ok(X3)) -> ok(if(X1,X2,X3))
            minus(ok(X1),ok(X2)) -> ok(minus(X1,X2))
            proper(0()) -> ok(0())
            proper(div(X1,X2)) -> div(proper(X1),proper(X2))
            proper(false()) -> ok(false())
            proper(geq(X1,X2)) -> geq(proper(X1),proper(X2))
            proper(if(X1,X2,X3)) -> if(proper(X1),proper(X2),proper(X3))
            proper(minus(X1,X2)) -> minus(proper(X1),proper(X2))
            proper(s(X)) -> s(proper(X))
            proper(true()) -> ok(true())
            s(mark(X)) -> mark(s(X))
            s(ok(X)) -> ok(s(X))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
        - Signature:
            {active/1,div/2,geq/2,if/3,minus/2,proper/1,s/1,top/1} / {0/0,false/0,mark/1,ok/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active,div,geq,if,minus,proper,s,top} and constructors {0
            ,false,mark,ok,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          div(x,y){x -> mark(x)} =
            div(mark(x),y) ->^+ mark(div(x,y))
              = C[div(x,y) = div(x,y){}]

WORST_CASE(Omega(n^1),?)