* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
            activate(n__from(X)) -> from(activate(X))
            activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
            activate(n__len(X)) -> len(activate(X))
            activate(n__s(X)) -> s(X)
            add(X1,X2) -> n__add(X1,X2)
            add(0(),X) -> X
            add(s(X),Y) -> s(n__add(activate(X),Y))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            fst(X1,X2) -> n__fst(X1,X2)
            fst(0(),Z) -> nil()
            fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z)))
            len(X) -> n__len(X)
            len(cons(X,Z)) -> s(n__len(activate(Z)))
            len(nil()) -> 0()
            s(X) -> n__s(X)
        - Signature:
            {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,from,fst,len,s} and constructors {0,cons
            ,n__add,n__from,n__fst,n__len,n__s,nil}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
            activate(n__from(X)) -> from(activate(X))
            activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
            activate(n__len(X)) -> len(activate(X))
            activate(n__s(X)) -> s(X)
            add(X1,X2) -> n__add(X1,X2)
            add(0(),X) -> X
            add(s(X),Y) -> s(n__add(activate(X),Y))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            fst(X1,X2) -> n__fst(X1,X2)
            fst(0(),Z) -> nil()
            fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z)))
            len(X) -> n__len(X)
            len(cons(X,Z)) -> s(n__len(activate(Z)))
            len(nil()) -> 0()
            s(X) -> n__s(X)
        - Signature:
            {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,from,fst,len,s} and constructors {0,cons
            ,n__add,n__from,n__fst,n__len,n__s,nil}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__add(x,y)} =
            activate(n__add(x,y)) ->^+ add(activate(x),activate(y))
              = C[activate(x) = activate(x){}]

** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
            activate(n__from(X)) -> from(activate(X))
            activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
            activate(n__len(X)) -> len(activate(X))
            activate(n__s(X)) -> s(X)
            add(X1,X2) -> n__add(X1,X2)
            add(0(),X) -> X
            add(s(X),Y) -> s(n__add(activate(X),Y))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            fst(X1,X2) -> n__fst(X1,X2)
            fst(0(),Z) -> nil()
            fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z)))
            len(X) -> n__len(X)
            len(cons(X,Z)) -> s(n__len(activate(Z)))
            len(nil()) -> 0()
            s(X) -> n__s(X)
        - Signature:
            {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,from,fst,len,s} and constructors {0,cons
            ,n__add,n__from,n__fst,n__len,n__s,nil}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          add(s(X),Y) -> s(n__add(activate(X),Y))
          fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z)))
        All above mentioned rules can be savely removed.
** Step 1.b:2: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
            activate(n__from(X)) -> from(activate(X))
            activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
            activate(n__len(X)) -> len(activate(X))
            activate(n__s(X)) -> s(X)
            add(X1,X2) -> n__add(X1,X2)
            add(0(),X) -> X
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            fst(X1,X2) -> n__fst(X1,X2)
            fst(0(),Z) -> nil()
            len(X) -> n__len(X)
            len(cons(X,Z)) -> s(n__len(activate(Z)))
            len(nil()) -> 0()
            s(X) -> n__s(X)
        - Signature:
            {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,from,fst,len,s} and constructors {0,cons
            ,n__add,n__from,n__fst,n__len,n__s,nil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(add) = {1,2},
            uargs(from) = {1},
            uargs(fst) = {1,2},
            uargs(len) = {1},
            uargs(n__len) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
            p(activate) = [1] x1 + [2]         
                 p(add) = [1] x1 + [1] x2 + [0]
                p(cons) = [1] x2 + [3]         
                p(from) = [1] x1 + [0]         
                 p(fst) = [1] x1 + [1] x2 + [0]
                 p(len) = [1] x1 + [0]         
              p(n__add) = [1] x1 + [1] x2 + [0]
             p(n__from) = [1] x1 + [7]         
              p(n__fst) = [1] x1 + [1] x2 + [0]
              p(n__len) = [1] x1 + [0]         
                p(n__s) = [1] x1 + [2]         
                 p(nil) = [0]                  
                   p(s) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
                   activate(X) = [1] X + [2]           
                               > [1] X + [0]           
                               = X                     
          
          activate(n__from(X)) = [1] X + [9]           
                               > [1] X + [2]           
                               = from(activate(X))     
          
             activate(n__s(X)) = [1] X + [4]           
                               > [1] X + [0]           
                               = s(X)                  
          
                len(cons(X,Z)) = [1] Z + [3]           
                               > [1] Z + [2]           
                               = s(n__len(activate(Z)))
          
          
          Following rules are (at-least) weakly oriented:
          activate(n__add(X1,X2)) =  [1] X1 + [1] X2 + [2]         
                                  >= [1] X1 + [1] X2 + [4]         
                                  =  add(activate(X1),activate(X2))
          
          activate(n__fst(X1,X2)) =  [1] X1 + [1] X2 + [2]         
                                  >= [1] X1 + [1] X2 + [4]         
                                  =  fst(activate(X1),activate(X2))
          
              activate(n__len(X)) =  [1] X + [2]                   
                                  >= [1] X + [2]                   
                                  =  len(activate(X))              
          
                       add(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                  >= [1] X1 + [1] X2 + [0]         
                                  =  n__add(X1,X2)                 
          
                       add(0(),X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  X                             
          
                          from(X) =  [1] X + [0]                   
                                  >= [1] X + [12]                  
                                  =  cons(X,n__from(n__s(X)))      
          
                          from(X) =  [1] X + [0]                   
                                  >= [1] X + [7]                   
                                  =  n__from(X)                    
          
                       fst(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                  >= [1] X1 + [1] X2 + [0]         
                                  =  n__fst(X1,X2)                 
          
                       fst(0(),Z) =  [1] Z + [0]                   
                                  >= [0]                           
                                  =  nil()                         
          
                           len(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  n__len(X)                     
          
                       len(nil()) =  [0]                           
                                  >= [0]                           
                                  =  0()                           
          
                             s(X) =  [1] X + [0]                   
                                  >= [1] X + [2]                   
                                  =  n__s(X)                       
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:3: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
            activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
            activate(n__len(X)) -> len(activate(X))
            add(X1,X2) -> n__add(X1,X2)
            add(0(),X) -> X
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            fst(X1,X2) -> n__fst(X1,X2)
            fst(0(),Z) -> nil()
            len(X) -> n__len(X)
            len(nil()) -> 0()
            s(X) -> n__s(X)
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(X)
            len(cons(X,Z)) -> s(n__len(activate(Z)))
        - Signature:
            {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,from,fst,len,s} and constructors {0,cons
            ,n__add,n__from,n__fst,n__len,n__s,nil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(add) = {1,2},
            uargs(from) = {1},
            uargs(fst) = {1,2},
            uargs(len) = {1},
            uargs(n__len) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [8]                  
            p(activate) = [1] x1 + [2]         
                 p(add) = [1] x1 + [1] x2 + [2]
                p(cons) = [1] x2 + [4]         
                p(from) = [1] x1 + [0]         
                 p(fst) = [1] x1 + [1] x2 + [0]
                 p(len) = [1] x1 + [0]         
              p(n__add) = [1] x1 + [1] x2 + [0]
             p(n__from) = [1] x1 + [0]         
              p(n__fst) = [1] x1 + [1] x2 + [0]
              p(n__len) = [1] x1 + [1]         
                p(n__s) = [1] x1 + [9]         
                 p(nil) = [0]                  
                   p(s) = [1] x1 + [1]         
          
          Following rules are strictly oriented:
          activate(n__len(X)) = [1] X + [3]          
                              > [1] X + [2]          
                              = len(activate(X))     
          
                   add(X1,X2) = [1] X1 + [1] X2 + [2]
                              > [1] X1 + [1] X2 + [0]
                              = n__add(X1,X2)        
          
                   add(0(),X) = [1] X + [10]         
                              > [1] X + [0]          
                              = X                    
          
                   fst(0(),Z) = [1] Z + [8]          
                              > [0]                  
                              = nil()                
          
          
          Following rules are (at-least) weakly oriented:
                      activate(X) =  [1] X + [2]                   
                                  >= [1] X + [0]                   
                                  =  X                             
          
          activate(n__add(X1,X2)) =  [1] X1 + [1] X2 + [2]         
                                  >= [1] X1 + [1] X2 + [6]         
                                  =  add(activate(X1),activate(X2))
          
             activate(n__from(X)) =  [1] X + [2]                   
                                  >= [1] X + [2]                   
                                  =  from(activate(X))             
          
          activate(n__fst(X1,X2)) =  [1] X1 + [1] X2 + [2]         
                                  >= [1] X1 + [1] X2 + [4]         
                                  =  fst(activate(X1),activate(X2))
          
                activate(n__s(X)) =  [1] X + [11]                  
                                  >= [1] X + [1]                   
                                  =  s(X)                          
          
                          from(X) =  [1] X + [0]                   
                                  >= [1] X + [13]                  
                                  =  cons(X,n__from(n__s(X)))      
          
                          from(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  n__from(X)                    
          
                       fst(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                  >= [1] X1 + [1] X2 + [0]         
                                  =  n__fst(X1,X2)                 
          
                           len(X) =  [1] X + [0]                   
                                  >= [1] X + [1]                   
                                  =  n__len(X)                     
          
                   len(cons(X,Z)) =  [1] Z + [4]                   
                                  >= [1] Z + [4]                   
                                  =  s(n__len(activate(Z)))        
          
                       len(nil()) =  [0]                           
                                  >= [8]                           
                                  =  0()                           
          
                             s(X) =  [1] X + [1]                   
                                  >= [1] X + [9]                   
                                  =  n__s(X)                       
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:4: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
            activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            fst(X1,X2) -> n__fst(X1,X2)
            len(X) -> n__len(X)
            len(nil()) -> 0()
            s(X) -> n__s(X)
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__len(X)) -> len(activate(X))
            activate(n__s(X)) -> s(X)
            add(X1,X2) -> n__add(X1,X2)
            add(0(),X) -> X
            fst(0(),Z) -> nil()
            len(cons(X,Z)) -> s(n__len(activate(Z)))
        - Signature:
            {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,from,fst,len,s} and constructors {0,cons
            ,n__add,n__from,n__fst,n__len,n__s,nil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(add) = {1,2},
            uargs(from) = {1},
            uargs(fst) = {1,2},
            uargs(len) = {1},
            uargs(n__len) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [1]                  
            p(activate) = [1] x1 + [6]         
                 p(add) = [1] x1 + [1] x2 + [0]
                p(cons) = [1] x2 + [7]         
                p(from) = [1] x1 + [1]         
                 p(fst) = [1] x1 + [1] x2 + [1]
                 p(len) = [1] x1 + [1]         
              p(n__add) = [1] x1 + [1] x2 + [0]
             p(n__from) = [1] x1 + [4]         
              p(n__fst) = [1] x1 + [1] x2 + [0]
              p(n__len) = [1] x1 + [2]         
                p(n__s) = [1] x1 + [2]         
                 p(nil) = [1]                  
                   p(s) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
          fst(X1,X2) = [1] X1 + [1] X2 + [1]
                     > [1] X1 + [1] X2 + [0]
                     = n__fst(X1,X2)        
          
          len(nil()) = [2]                  
                     > [1]                  
                     = 0()                  
          
          
          Following rules are (at-least) weakly oriented:
                      activate(X) =  [1] X + [6]                   
                                  >= [1] X + [0]                   
                                  =  X                             
          
          activate(n__add(X1,X2)) =  [1] X1 + [1] X2 + [6]         
                                  >= [1] X1 + [1] X2 + [12]        
                                  =  add(activate(X1),activate(X2))
          
             activate(n__from(X)) =  [1] X + [10]                  
                                  >= [1] X + [7]                   
                                  =  from(activate(X))             
          
          activate(n__fst(X1,X2)) =  [1] X1 + [1] X2 + [6]         
                                  >= [1] X1 + [1] X2 + [13]        
                                  =  fst(activate(X1),activate(X2))
          
              activate(n__len(X)) =  [1] X + [8]                   
                                  >= [1] X + [7]                   
                                  =  len(activate(X))              
          
                activate(n__s(X)) =  [1] X + [8]                   
                                  >= [1] X + [0]                   
                                  =  s(X)                          
          
                       add(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                  >= [1] X1 + [1] X2 + [0]         
                                  =  n__add(X1,X2)                 
          
                       add(0(),X) =  [1] X + [1]                   
                                  >= [1] X + [0]                   
                                  =  X                             
          
                          from(X) =  [1] X + [1]                   
                                  >= [1] X + [13]                  
                                  =  cons(X,n__from(n__s(X)))      
          
                          from(X) =  [1] X + [1]                   
                                  >= [1] X + [4]                   
                                  =  n__from(X)                    
          
                       fst(0(),Z) =  [1] Z + [2]                   
                                  >= [1]                           
                                  =  nil()                         
          
                           len(X) =  [1] X + [1]                   
                                  >= [1] X + [2]                   
                                  =  n__len(X)                     
          
                   len(cons(X,Z)) =  [1] Z + [8]                   
                                  >= [1] Z + [8]                   
                                  =  s(n__len(activate(Z)))        
          
                             s(X) =  [1] X + [0]                   
                                  >= [1] X + [2]                   
                                  =  n__s(X)                       
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:5: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
            activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            len(X) -> n__len(X)
            s(X) -> n__s(X)
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__len(X)) -> len(activate(X))
            activate(n__s(X)) -> s(X)
            add(X1,X2) -> n__add(X1,X2)
            add(0(),X) -> X
            fst(X1,X2) -> n__fst(X1,X2)
            fst(0(),Z) -> nil()
            len(cons(X,Z)) -> s(n__len(activate(Z)))
            len(nil()) -> 0()
        - Signature:
            {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,from,fst,len,s} and constructors {0,cons
            ,n__add,n__from,n__fst,n__len,n__s,nil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(add) = {1,2},
            uargs(from) = {1},
            uargs(fst) = {1,2},
            uargs(len) = {1},
            uargs(n__len) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [2]                  
            p(activate) = [1] x1 + [2]         
                 p(add) = [1] x1 + [1] x2 + [0]
                p(cons) = [1] x2 + [5]         
                p(from) = [1] x1 + [0]         
                 p(fst) = [1] x1 + [1] x2 + [0]
                 p(len) = [1] x1 + [0]         
              p(n__add) = [1] x1 + [1] x2 + [0]
             p(n__from) = [1] x1 + [0]         
              p(n__fst) = [1] x1 + [1] x2 + [0]
              p(n__len) = [1] x1 + [2]         
                p(n__s) = [1] x1 + [0]         
                 p(nil) = [2]                  
                   p(s) = [1] x1 + [1]         
          
          Following rules are strictly oriented:
          s(X) = [1] X + [1]
               > [1] X + [0]
               = n__s(X)    
          
          
          Following rules are (at-least) weakly oriented:
                      activate(X) =  [1] X + [2]                   
                                  >= [1] X + [0]                   
                                  =  X                             
          
          activate(n__add(X1,X2)) =  [1] X1 + [1] X2 + [2]         
                                  >= [1] X1 + [1] X2 + [4]         
                                  =  add(activate(X1),activate(X2))
          
             activate(n__from(X)) =  [1] X + [2]                   
                                  >= [1] X + [2]                   
                                  =  from(activate(X))             
          
          activate(n__fst(X1,X2)) =  [1] X1 + [1] X2 + [2]         
                                  >= [1] X1 + [1] X2 + [4]         
                                  =  fst(activate(X1),activate(X2))
          
              activate(n__len(X)) =  [1] X + [4]                   
                                  >= [1] X + [2]                   
                                  =  len(activate(X))              
          
                activate(n__s(X)) =  [1] X + [2]                   
                                  >= [1] X + [1]                   
                                  =  s(X)                          
          
                       add(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                  >= [1] X1 + [1] X2 + [0]         
                                  =  n__add(X1,X2)                 
          
                       add(0(),X) =  [1] X + [2]                   
                                  >= [1] X + [0]                   
                                  =  X                             
          
                          from(X) =  [1] X + [0]                   
                                  >= [1] X + [5]                   
                                  =  cons(X,n__from(n__s(X)))      
          
                          from(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  n__from(X)                    
          
                       fst(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                  >= [1] X1 + [1] X2 + [0]         
                                  =  n__fst(X1,X2)                 
          
                       fst(0(),Z) =  [1] Z + [2]                   
                                  >= [2]                           
                                  =  nil()                         
          
                           len(X) =  [1] X + [0]                   
                                  >= [1] X + [2]                   
                                  =  n__len(X)                     
          
                   len(cons(X,Z)) =  [1] Z + [5]                   
                                  >= [1] Z + [5]                   
                                  =  s(n__len(activate(Z)))        
          
                       len(nil()) =  [2]                           
                                  >= [2]                           
                                  =  0()                           
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:6: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
            activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            len(X) -> n__len(X)
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__len(X)) -> len(activate(X))
            activate(n__s(X)) -> s(X)
            add(X1,X2) -> n__add(X1,X2)
            add(0(),X) -> X
            fst(X1,X2) -> n__fst(X1,X2)
            fst(0(),Z) -> nil()
            len(cons(X,Z)) -> s(n__len(activate(Z)))
            len(nil()) -> 0()
            s(X) -> n__s(X)
        - Signature:
            {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,from,fst,len,s} and constructors {0,cons
            ,n__add,n__from,n__fst,n__len,n__s,nil}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(add) = {1,2},
          uargs(from) = {1},
          uargs(fst) = {1,2},
          uargs(len) = {1},
          uargs(n__len) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {activate,add,from,fst,len,s}
        TcT has computed the following interpretation:
                 p(0) = [3]                        
                        [0]                        
          p(activate) = [1 1] x_1 + [0]            
                        [0 4]       [0]            
               p(add) = [1 0] x_1 + [1 0] x_2 + [0]
                        [0 1]       [0 1]       [4]
              p(cons) = [0 0] x_1 + [1 4] x_2 + [0]
                        [0 1]       [0 1]       [0]
              p(from) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
               p(fst) = [1 0] x_1 + [1 0] x_2 + [0]
                        [0 1]       [0 1]       [0]
               p(len) = [1 0] x_1 + [5]            
                        [0 1]       [0]            
            p(n__add) = [1 0] x_1 + [1 0] x_2 + [0]
                        [0 1]       [0 1]       [2]
           p(n__from) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
            p(n__fst) = [1 0] x_1 + [1 0] x_2 + [0]
                        [0 1]       [0 1]       [0]
            p(n__len) = [1 0] x_1 + [5]            
                        [0 1]       [0]            
              p(n__s) = [1 0] x_1 + [0]            
                        [0 0]       [0]            
               p(nil) = [3]                        
                        [0]                        
                 p(s) = [1 0] x_1 + [0]            
                        [0 0]       [0]            
        
        Following rules are strictly oriented:
        activate(n__add(X1,X2)) = [1 1] X1 + [1 1] X2 + [2]     
                                  [0 4]      [0 4]      [8]     
                                > [1 1] X1 + [1 1] X2 + [0]     
                                  [0 4]      [0 4]      [4]     
                                = add(activate(X1),activate(X2))
        
        
        Following rules are (at-least) weakly oriented:
                    activate(X) =  [1 1] X + [0]                 
                                   [0 4]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  X                             
        
           activate(n__from(X)) =  [1 1] X + [0]                 
                                   [0 4]     [0]                 
                                >= [1 1] X + [0]                 
                                   [0 4]     [0]                 
                                =  from(activate(X))             
        
        activate(n__fst(X1,X2)) =  [1 1] X1 + [1 1] X2 + [0]     
                                   [0 4]      [0 4]      [0]     
                                >= [1 1] X1 + [1 1] X2 + [0]     
                                   [0 4]      [0 4]      [0]     
                                =  fst(activate(X1),activate(X2))
        
            activate(n__len(X)) =  [1 1] X + [5]                 
                                   [0 4]     [0]                 
                                >= [1 1] X + [5]                 
                                   [0 4]     [0]                 
                                =  len(activate(X))              
        
              activate(n__s(X)) =  [1 0] X + [0]                 
                                   [0 0]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 0]     [0]                 
                                =  s(X)                          
        
                     add(X1,X2) =  [1 0] X1 + [1 0] X2 + [0]     
                                   [0 1]      [0 1]      [4]     
                                >= [1 0] X1 + [1 0] X2 + [0]     
                                   [0 1]      [0 1]      [2]     
                                =  n__add(X1,X2)                 
        
                     add(0(),X) =  [1 0] X + [3]                 
                                   [0 1]     [4]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  X                             
        
                        from(X) =  [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  cons(X,n__from(n__s(X)))      
        
                        from(X) =  [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  n__from(X)                    
        
                     fst(X1,X2) =  [1 0] X1 + [1 0] X2 + [0]     
                                   [0 1]      [0 1]      [0]     
                                >= [1 0] X1 + [1 0] X2 + [0]     
                                   [0 1]      [0 1]      [0]     
                                =  n__fst(X1,X2)                 
        
                     fst(0(),Z) =  [1 0] Z + [3]                 
                                   [0 1]     [0]                 
                                >= [3]                           
                                   [0]                           
                                =  nil()                         
        
                         len(X) =  [1 0] X + [5]                 
                                   [0 1]     [0]                 
                                >= [1 0] X + [5]                 
                                   [0 1]     [0]                 
                                =  n__len(X)                     
        
                 len(cons(X,Z)) =  [0 0] X + [1 4] Z + [5]       
                                   [0 1]     [0 1]     [0]       
                                >= [1 1] Z + [5]                 
                                   [0 0]     [0]                 
                                =  s(n__len(activate(Z)))        
        
                     len(nil()) =  [8]                           
                                   [0]                           
                                >= [3]                           
                                   [0]                           
                                =  0()                           
        
                           s(X) =  [1 0] X + [0]                 
                                   [0 0]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 0]     [0]                 
                                =  n__s(X)                       
        
** Step 1.b:7: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            len(X) -> n__len(X)
        - Weak TRS:
            activate(X) -> X
            activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
            activate(n__from(X)) -> from(activate(X))
            activate(n__len(X)) -> len(activate(X))
            activate(n__s(X)) -> s(X)
            add(X1,X2) -> n__add(X1,X2)
            add(0(),X) -> X
            fst(X1,X2) -> n__fst(X1,X2)
            fst(0(),Z) -> nil()
            len(cons(X,Z)) -> s(n__len(activate(Z)))
            len(nil()) -> 0()
            s(X) -> n__s(X)
        - Signature:
            {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,from,fst,len,s} and constructors {0,cons
            ,n__add,n__from,n__fst,n__len,n__s,nil}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(add) = {1,2},
          uargs(from) = {1},
          uargs(fst) = {1,2},
          uargs(len) = {1},
          uargs(n__len) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {activate,add,from,fst,len,s}
        TcT has computed the following interpretation:
                 p(0) = [5]                        
                        [5]                        
          p(activate) = [1 2] x_1 + [0]            
                        [0 2]       [0]            
               p(add) = [1 0] x_1 + [1 0] x_2 + [6]
                        [0 1]       [0 1]       [7]
              p(cons) = [0 0] x_1 + [1 4] x_2 + [0]
                        [0 1]       [0 0]       [0]
              p(from) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
               p(fst) = [1 0] x_1 + [1 0] x_2 + [5]
                        [0 1]       [0 1]       [4]
               p(len) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
            p(n__add) = [1 0] x_1 + [1 0] x_2 + [2]
                        [0 1]       [0 1]       [5]
           p(n__from) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
            p(n__fst) = [1 0] x_1 + [1 0] x_2 + [2]
                        [0 1]       [0 1]       [4]
            p(n__len) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
              p(n__s) = [1 0] x_1 + [0]            
                        [0 0]       [0]            
               p(nil) = [5]                        
                        [5]                        
                 p(s) = [1 0] x_1 + [0]            
                        [0 0]       [0]            
        
        Following rules are strictly oriented:
        activate(n__fst(X1,X2)) = [1 2] X1 + [1 2] X2 + [10]    
                                  [0 2]      [0 2]      [8]     
                                > [1 2] X1 + [1 2] X2 + [5]     
                                  [0 2]      [0 2]      [4]     
                                = fst(activate(X1),activate(X2))
        
        
        Following rules are (at-least) weakly oriented:
                    activate(X) =  [1 2] X + [0]                 
                                   [0 2]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  X                             
        
        activate(n__add(X1,X2)) =  [1 2] X1 + [1 2] X2 + [12]    
                                   [0 2]      [0 2]      [10]    
                                >= [1 2] X1 + [1 2] X2 + [6]     
                                   [0 2]      [0 2]      [7]     
                                =  add(activate(X1),activate(X2))
        
           activate(n__from(X)) =  [1 2] X + [0]                 
                                   [0 2]     [0]                 
                                >= [1 2] X + [0]                 
                                   [0 2]     [0]                 
                                =  from(activate(X))             
        
            activate(n__len(X)) =  [1 2] X + [0]                 
                                   [0 2]     [0]                 
                                >= [1 2] X + [0]                 
                                   [0 2]     [0]                 
                                =  len(activate(X))              
        
              activate(n__s(X)) =  [1 0] X + [0]                 
                                   [0 0]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 0]     [0]                 
                                =  s(X)                          
        
                     add(X1,X2) =  [1 0] X1 + [1 0] X2 + [6]     
                                   [0 1]      [0 1]      [7]     
                                >= [1 0] X1 + [1 0] X2 + [2]     
                                   [0 1]      [0 1]      [5]     
                                =  n__add(X1,X2)                 
        
                     add(0(),X) =  [1 0] X + [11]                
                                   [0 1]     [12]                
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  X                             
        
                        from(X) =  [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  cons(X,n__from(n__s(X)))      
        
                        from(X) =  [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  n__from(X)                    
        
                     fst(X1,X2) =  [1 0] X1 + [1 0] X2 + [5]     
                                   [0 1]      [0 1]      [4]     
                                >= [1 0] X1 + [1 0] X2 + [2]     
                                   [0 1]      [0 1]      [4]     
                                =  n__fst(X1,X2)                 
        
                     fst(0(),Z) =  [1 0] Z + [10]                
                                   [0 1]     [9]                 
                                >= [5]                           
                                   [5]                           
                                =  nil()                         
        
                         len(X) =  [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  n__len(X)                     
        
                 len(cons(X,Z)) =  [0 0] X + [1 4] Z + [0]       
                                   [0 1]     [0 0]     [0]       
                                >= [1 2] Z + [0]                 
                                   [0 0]     [0]                 
                                =  s(n__len(activate(Z)))        
        
                     len(nil()) =  [5]                           
                                   [5]                           
                                >= [5]                           
                                   [5]                           
                                =  0()                           
        
                           s(X) =  [1 0] X + [0]                 
                                   [0 0]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 0]     [0]                 
                                =  n__s(X)                       
        
** Step 1.b:8: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            len(X) -> n__len(X)
        - Weak TRS:
            activate(X) -> X
            activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
            activate(n__from(X)) -> from(activate(X))
            activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
            activate(n__len(X)) -> len(activate(X))
            activate(n__s(X)) -> s(X)
            add(X1,X2) -> n__add(X1,X2)
            add(0(),X) -> X
            fst(X1,X2) -> n__fst(X1,X2)
            fst(0(),Z) -> nil()
            len(cons(X,Z)) -> s(n__len(activate(Z)))
            len(nil()) -> 0()
            s(X) -> n__s(X)
        - Signature:
            {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,from,fst,len,s} and constructors {0,cons
            ,n__add,n__from,n__fst,n__len,n__s,nil}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(add) = {1,2},
          uargs(from) = {1},
          uargs(fst) = {1,2},
          uargs(len) = {1},
          uargs(n__len) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {activate,add,from,fst,len,s}
        TcT has computed the following interpretation:
                 p(0) = [1]                        
                        [4]                        
          p(activate) = [1 1] x_1 + [0]            
                        [1 4]       [0]            
               p(add) = [1 0] x_1 + [1 0] x_2 + [1]
                        [0 1]       [0 1]       [1]
              p(cons) = [0 0] x_1 + [1 1] x_2 + [0]
                        [0 1]       [0 1]       [0]
              p(from) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
               p(fst) = [1 0] x_1 + [1 0] x_2 + [0]
                        [0 1]       [0 1]       [0]
               p(len) = [1 0] x_1 + [1]            
                        [0 1]       [4]            
            p(n__add) = [1 0] x_1 + [1 0] x_2 + [1]
                        [0 1]       [0 1]       [0]
           p(n__from) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
            p(n__fst) = [1 0] x_1 + [1 0] x_2 + [0]
                        [0 1]       [0 1]       [0]
            p(n__len) = [1 0] x_1 + [0]            
                        [0 1]       [1]            
              p(n__s) = [1 0] x_1 + [0]            
                        [0 0]       [0]            
               p(nil) = [0]                        
                        [0]                        
                 p(s) = [1 0] x_1 + [0]            
                        [0 0]       [0]            
        
        Following rules are strictly oriented:
        len(X) = [1 0] X + [1]
                 [0 1]     [4]
               > [1 0] X + [0]
                 [0 1]     [1]
               = n__len(X)    
        
        
        Following rules are (at-least) weakly oriented:
                    activate(X) =  [1 1] X + [0]                 
                                   [1 4]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  X                             
        
        activate(n__add(X1,X2)) =  [1 1] X1 + [1 1] X2 + [1]     
                                   [1 4]      [1 4]      [1]     
                                >= [1 1] X1 + [1 1] X2 + [1]     
                                   [1 4]      [1 4]      [1]     
                                =  add(activate(X1),activate(X2))
        
           activate(n__from(X)) =  [1 1] X + [0]                 
                                   [1 4]     [0]                 
                                >= [1 1] X + [0]                 
                                   [1 4]     [0]                 
                                =  from(activate(X))             
        
        activate(n__fst(X1,X2)) =  [1 1] X1 + [1 1] X2 + [0]     
                                   [1 4]      [1 4]      [0]     
                                >= [1 1] X1 + [1 1] X2 + [0]     
                                   [1 4]      [1 4]      [0]     
                                =  fst(activate(X1),activate(X2))
        
            activate(n__len(X)) =  [1 1] X + [1]                 
                                   [1 4]     [4]                 
                                >= [1 1] X + [1]                 
                                   [1 4]     [4]                 
                                =  len(activate(X))              
        
              activate(n__s(X)) =  [1 0] X + [0]                 
                                   [1 0]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 0]     [0]                 
                                =  s(X)                          
        
                     add(X1,X2) =  [1 0] X1 + [1 0] X2 + [1]     
                                   [0 1]      [0 1]      [1]     
                                >= [1 0] X1 + [1 0] X2 + [1]     
                                   [0 1]      [0 1]      [0]     
                                =  n__add(X1,X2)                 
        
                     add(0(),X) =  [1 0] X + [2]                 
                                   [0 1]     [5]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  X                             
        
                        from(X) =  [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  cons(X,n__from(n__s(X)))      
        
                        from(X) =  [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  n__from(X)                    
        
                     fst(X1,X2) =  [1 0] X1 + [1 0] X2 + [0]     
                                   [0 1]      [0 1]      [0]     
                                >= [1 0] X1 + [1 0] X2 + [0]     
                                   [0 1]      [0 1]      [0]     
                                =  n__fst(X1,X2)                 
        
                     fst(0(),Z) =  [1 0] Z + [1]                 
                                   [0 1]     [4]                 
                                >= [0]                           
                                   [0]                           
                                =  nil()                         
        
                 len(cons(X,Z)) =  [0 0] X + [1 1] Z + [1]       
                                   [0 1]     [0 1]     [4]       
                                >= [1 1] Z + [0]                 
                                   [0 0]     [0]                 
                                =  s(n__len(activate(Z)))        
        
                     len(nil()) =  [1]                           
                                   [4]                           
                                >= [1]                           
                                   [4]                           
                                =  0()                           
        
                           s(X) =  [1 0] X + [0]                 
                                   [0 0]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 0]     [0]                 
                                =  n__s(X)                       
        
** Step 1.b:9: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
        - Weak TRS:
            activate(X) -> X
            activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
            activate(n__from(X)) -> from(activate(X))
            activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
            activate(n__len(X)) -> len(activate(X))
            activate(n__s(X)) -> s(X)
            add(X1,X2) -> n__add(X1,X2)
            add(0(),X) -> X
            fst(X1,X2) -> n__fst(X1,X2)
            fst(0(),Z) -> nil()
            len(X) -> n__len(X)
            len(cons(X,Z)) -> s(n__len(activate(Z)))
            len(nil()) -> 0()
            s(X) -> n__s(X)
        - Signature:
            {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,from,fst,len,s} and constructors {0,cons
            ,n__add,n__from,n__fst,n__len,n__s,nil}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(add) = {1,2},
          uargs(from) = {1},
          uargs(fst) = {1,2},
          uargs(len) = {1},
          uargs(n__len) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {activate,add,from,fst,len,s}
        TcT has computed the following interpretation:
                 p(0) = [2]                        
                        [5]                        
          p(activate) = [1 4] x_1 + [0]            
                        [0 4]       [0]            
               p(add) = [1 0] x_1 + [1 0] x_2 + [7]
                        [0 1]       [0 1]       [0]
              p(cons) = [1 4] x_2 + [0]            
                        [0 0]       [2]            
              p(from) = [1 0] x_1 + [4]            
                        [0 1]       [2]            
               p(fst) = [1 0] x_1 + [1 0] x_2 + [5]
                        [0 1]       [0 1]       [4]
               p(len) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
            p(n__add) = [1 0] x_1 + [1 0] x_2 + [7]
                        [0 1]       [0 1]       [0]
           p(n__from) = [1 0] x_1 + [0]            
                        [0 1]       [1]            
            p(n__fst) = [1 0] x_1 + [1 0] x_2 + [2]
                        [0 1]       [0 1]       [1]
            p(n__len) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
              p(n__s) = [1 0] x_1 + [0]            
                        [0 0]       [0]            
               p(nil) = [7]                        
                        [6]                        
                 p(s) = [1 0] x_1 + [0]            
                        [0 0]       [0]            
        
        Following rules are strictly oriented:
        from(X) = [1 0] X + [4]
                  [0 1]     [2]
                > [1 0] X + [0]
                  [0 1]     [1]
                = n__from(X)   
        
        
        Following rules are (at-least) weakly oriented:
                    activate(X) =  [1 4] X + [0]                 
                                   [0 4]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  X                             
        
        activate(n__add(X1,X2)) =  [1 4] X1 + [1 4] X2 + [7]     
                                   [0 4]      [0 4]      [0]     
                                >= [1 4] X1 + [1 4] X2 + [7]     
                                   [0 4]      [0 4]      [0]     
                                =  add(activate(X1),activate(X2))
        
           activate(n__from(X)) =  [1 4] X + [4]                 
                                   [0 4]     [4]                 
                                >= [1 4] X + [4]                 
                                   [0 4]     [2]                 
                                =  from(activate(X))             
        
        activate(n__fst(X1,X2)) =  [1 4] X1 + [1 4] X2 + [6]     
                                   [0 4]      [0 4]      [4]     
                                >= [1 4] X1 + [1 4] X2 + [5]     
                                   [0 4]      [0 4]      [4]     
                                =  fst(activate(X1),activate(X2))
        
            activate(n__len(X)) =  [1 4] X + [0]                 
                                   [0 4]     [0]                 
                                >= [1 4] X + [0]                 
                                   [0 4]     [0]                 
                                =  len(activate(X))              
        
              activate(n__s(X)) =  [1 0] X + [0]                 
                                   [0 0]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 0]     [0]                 
                                =  s(X)                          
        
                     add(X1,X2) =  [1 0] X1 + [1 0] X2 + [7]     
                                   [0 1]      [0 1]      [0]     
                                >= [1 0] X1 + [1 0] X2 + [7]     
                                   [0 1]      [0 1]      [0]     
                                =  n__add(X1,X2)                 
        
                     add(0(),X) =  [1 0] X + [9]                 
                                   [0 1]     [5]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  X                             
        
                        from(X) =  [1 0] X + [4]                 
                                   [0 1]     [2]                 
                                >= [1 0] X + [4]                 
                                   [0 0]     [2]                 
                                =  cons(X,n__from(n__s(X)))      
        
                     fst(X1,X2) =  [1 0] X1 + [1 0] X2 + [5]     
                                   [0 1]      [0 1]      [4]     
                                >= [1 0] X1 + [1 0] X2 + [2]     
                                   [0 1]      [0 1]      [1]     
                                =  n__fst(X1,X2)                 
        
                     fst(0(),Z) =  [1 0] Z + [7]                 
                                   [0 1]     [9]                 
                                >= [7]                           
                                   [6]                           
                                =  nil()                         
        
                         len(X) =  [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  n__len(X)                     
        
                 len(cons(X,Z)) =  [1 4] Z + [0]                 
                                   [0 0]     [2]                 
                                >= [1 4] Z + [0]                 
                                   [0 0]     [0]                 
                                =  s(n__len(activate(Z)))        
        
                     len(nil()) =  [7]                           
                                   [6]                           
                                >= [2]                           
                                   [5]                           
                                =  0()                           
        
                           s(X) =  [1 0] X + [0]                 
                                   [0 0]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 0]     [0]                 
                                =  n__s(X)                       
        
** Step 1.b:10: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            from(X) -> cons(X,n__from(n__s(X)))
        - Weak TRS:
            activate(X) -> X
            activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
            activate(n__from(X)) -> from(activate(X))
            activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
            activate(n__len(X)) -> len(activate(X))
            activate(n__s(X)) -> s(X)
            add(X1,X2) -> n__add(X1,X2)
            add(0(),X) -> X
            from(X) -> n__from(X)
            fst(X1,X2) -> n__fst(X1,X2)
            fst(0(),Z) -> nil()
            len(X) -> n__len(X)
            len(cons(X,Z)) -> s(n__len(activate(Z)))
            len(nil()) -> 0()
            s(X) -> n__s(X)
        - Signature:
            {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,from,fst,len,s} and constructors {0,cons
            ,n__add,n__from,n__fst,n__len,n__s,nil}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 3, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(add) = {1,2},
          uargs(from) = {1},
          uargs(fst) = {1,2},
          uargs(len) = {1},
          uargs(n__len) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {activate,add,from,fst,len,s}
        TcT has computed the following interpretation:
                 p(0) = [4]                            
                        [0]                            
                        [1]                            
          p(activate) = [1 0 3]       [0]              
                        [0 1 0] x_1 + [2]              
                        [1 0 2]       [0]              
               p(add) = [1 0 0]       [1 0 0]       [0]
                        [0 0 0] x_1 + [0 1 0] x_2 + [0]
                        [0 0 1]       [0 0 1]       [0]
              p(cons) = [1 4 0]       [2]              
                        [0 0 2] x_2 + [0]              
                        [0 0 0]       [0]              
              p(from) = [1 0 0]       [3]              
                        [0 0 0] x_1 + [2]              
                        [0 0 1]       [1]              
               p(fst) = [1 0 0]       [1 0 0]       [0]
                        [0 1 0] x_1 + [0 0 0] x_2 + [4]
                        [0 0 1]       [0 0 1]       [0]
               p(len) = [1 4 0]       [6]              
                        [0 0 0] x_1 + [0]              
                        [0 2 1]       [6]              
            p(n__add) = [1 0 0]       [1 0 0]       [0]
                        [0 0 0] x_1 + [0 1 0] x_2 + [0]
                        [0 0 1]       [0 0 1]       [0]
           p(n__from) = [1 0 0]       [0]              
                        [0 0 0] x_1 + [0]              
                        [0 0 1]       [1]              
            p(n__fst) = [1 0 0]       [1 0 0]       [0]
                        [0 1 0] x_1 + [0 0 0] x_2 + [4]
                        [0 0 1]       [0 0 1]       [0]
            p(n__len) = [1 4 0]       [0]              
                        [0 0 0] x_1 + [0]              
                        [0 0 1]       [5]              
              p(n__s) = [1 0 0]       [0]              
                        [0 0 0] x_1 + [0]              
                        [0 0 0]       [0]              
               p(nil) = [1]                            
                        [0]                            
                        [1]                            
                 p(s) = [1 0 0]       [0]              
                        [0 0 0] x_1 + [0]              
                        [0 0 0]       [0]              
        
        Following rules are strictly oriented:
        from(X) = [1 0 0]     [3]         
                  [0 0 0] X + [2]         
                  [0 0 1]     [1]         
                > [1 0 0]     [2]         
                  [0 0 0] X + [2]         
                  [0 0 0]     [0]         
                = cons(X,n__from(n__s(X)))
        
        
        Following rules are (at-least) weakly oriented:
                    activate(X) =  [1 0 3]     [0]               
                                   [0 1 0] X + [2]               
                                   [1 0 2]     [0]               
                                >= [1 0 0]     [0]               
                                   [0 1 0] X + [0]               
                                   [0 0 1]     [0]               
                                =  X                             
        
        activate(n__add(X1,X2)) =  [1 0 3]      [1 0 3]      [0] 
                                   [0 0 0] X1 + [0 1 0] X2 + [2] 
                                   [1 0 2]      [1 0 2]      [0] 
                                >= [1 0 3]      [1 0 3]      [0] 
                                   [0 0 0] X1 + [0 1 0] X2 + [2] 
                                   [1 0 2]      [1 0 2]      [0] 
                                =  add(activate(X1),activate(X2))
        
           activate(n__from(X)) =  [1 0 3]     [3]               
                                   [0 0 0] X + [2]               
                                   [1 0 2]     [2]               
                                >= [1 0 3]     [3]               
                                   [0 0 0] X + [2]               
                                   [1 0 2]     [1]               
                                =  from(activate(X))             
        
        activate(n__fst(X1,X2)) =  [1 0 3]      [1 0 3]      [0] 
                                   [0 1 0] X1 + [0 0 0] X2 + [6] 
                                   [1 0 2]      [1 0 2]      [0] 
                                >= [1 0 3]      [1 0 3]      [0] 
                                   [0 1 0] X1 + [0 0 0] X2 + [6] 
                                   [1 0 2]      [1 0 2]      [0] 
                                =  fst(activate(X1),activate(X2))
        
            activate(n__len(X)) =  [1 4 3]     [15]              
                                   [0 0 0] X + [2]               
                                   [1 4 2]     [10]              
                                >= [1 4 3]     [14]              
                                   [0 0 0] X + [0]               
                                   [1 2 2]     [10]              
                                =  len(activate(X))              
        
              activate(n__s(X)) =  [1 0 0]     [0]               
                                   [0 0 0] X + [2]               
                                   [1 0 0]     [0]               
                                >= [1 0 0]     [0]               
                                   [0 0 0] X + [0]               
                                   [0 0 0]     [0]               
                                =  s(X)                          
        
                     add(X1,X2) =  [1 0 0]      [1 0 0]      [0] 
                                   [0 0 0] X1 + [0 1 0] X2 + [0] 
                                   [0 0 1]      [0 0 1]      [0] 
                                >= [1 0 0]      [1 0 0]      [0] 
                                   [0 0 0] X1 + [0 1 0] X2 + [0] 
                                   [0 0 1]      [0 0 1]      [0] 
                                =  n__add(X1,X2)                 
        
                     add(0(),X) =  [1 0 0]     [4]               
                                   [0 1 0] X + [0]               
                                   [0 0 1]     [1]               
                                >= [1 0 0]     [0]               
                                   [0 1 0] X + [0]               
                                   [0 0 1]     [0]               
                                =  X                             
        
                        from(X) =  [1 0 0]     [3]               
                                   [0 0 0] X + [2]               
                                   [0 0 1]     [1]               
                                >= [1 0 0]     [0]               
                                   [0 0 0] X + [0]               
                                   [0 0 1]     [1]               
                                =  n__from(X)                    
        
                     fst(X1,X2) =  [1 0 0]      [1 0 0]      [0] 
                                   [0 1 0] X1 + [0 0 0] X2 + [4] 
                                   [0 0 1]      [0 0 1]      [0] 
                                >= [1 0 0]      [1 0 0]      [0] 
                                   [0 1 0] X1 + [0 0 0] X2 + [4] 
                                   [0 0 1]      [0 0 1]      [0] 
                                =  n__fst(X1,X2)                 
        
                     fst(0(),Z) =  [1 0 0]     [4]               
                                   [0 0 0] Z + [4]               
                                   [0 0 1]     [1]               
                                >= [1]                           
                                   [0]                           
                                   [1]                           
                                =  nil()                         
        
                         len(X) =  [1 4 0]     [6]               
                                   [0 0 0] X + [0]               
                                   [0 2 1]     [6]               
                                >= [1 4 0]     [0]               
                                   [0 0 0] X + [0]               
                                   [0 0 1]     [5]               
                                =  n__len(X)                     
        
                 len(cons(X,Z)) =  [1 4 8]     [8]               
                                   [0 0 0] Z + [0]               
                                   [0 0 4]     [6]               
                                >= [1 4 3]     [8]               
                                   [0 0 0] Z + [0]               
                                   [0 0 0]     [0]               
                                =  s(n__len(activate(Z)))        
        
                     len(nil()) =  [7]                           
                                   [0]                           
                                   [7]                           
                                >= [4]                           
                                   [0]                           
                                   [1]                           
                                =  0()                           
        
                           s(X) =  [1 0 0]     [0]               
                                   [0 0 0] X + [0]               
                                   [0 0 0]     [0]               
                                >= [1 0 0]     [0]               
                                   [0 0 0] X + [0]               
                                   [0 0 0]     [0]               
                                =  n__s(X)                       
        
** Step 1.b:11: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            activate(X) -> X
            activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
            activate(n__from(X)) -> from(activate(X))
            activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
            activate(n__len(X)) -> len(activate(X))
            activate(n__s(X)) -> s(X)
            add(X1,X2) -> n__add(X1,X2)
            add(0(),X) -> X
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            fst(X1,X2) -> n__fst(X1,X2)
            fst(0(),Z) -> nil()
            len(X) -> n__len(X)
            len(cons(X,Z)) -> s(n__len(activate(Z)))
            len(nil()) -> 0()
            s(X) -> n__s(X)
        - Signature:
            {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,from,fst,len,s} and constructors {0,cons
            ,n__add,n__from,n__fst,n__len,n__s,nil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))