* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__terms(X)) -> terms(activate(X))
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
            s(X) -> n__s(X)
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
            terms(X) -> n__terms(X)
        - Signature:
            {activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
            ,cons,n__first,n__s,n__terms,nil,recip}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__terms(X)) -> terms(activate(X))
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
            s(X) -> n__s(X)
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
            terms(X) -> n__terms(X)
        - Signature:
            {activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
            ,cons,n__first,n__s,n__terms,nil,recip}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__first(x,y)} =
            activate(n__first(x,y)) ->^+ first(activate(x),activate(y))
              = C[activate(x) = activate(x){}]

** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__terms(X)) -> terms(activate(X))
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
            s(X) -> n__s(X)
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
            terms(X) -> n__terms(X)
        - Signature:
            {activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
            ,cons,n__first,n__s,n__terms,nil,recip}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          add(s(X),Y) -> s(add(X,Y))
          dbl(s(X)) -> s(s(dbl(X)))
          first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
          sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        All above mentioned rules can be savely removed.
** Step 1.b:2: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__terms(X)) -> terms(activate(X))
            add(0(),X) -> X
            dbl(0()) -> 0()
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            s(X) -> n__s(X)
            sqr(0()) -> 0()
            terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
            terms(X) -> n__terms(X)
        - Signature:
            {activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
            ,cons,n__first,n__s,n__terms,nil,recip}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(cons) = {1},
            uargs(first) = {1,2},
            uargs(recip) = {1},
            uargs(s) = {1},
            uargs(terms) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
            p(activate) = [1] x1 + [4]         
                 p(add) = [2] x2 + [0]         
                p(cons) = [1] x1 + [1] x2 + [0]
                 p(dbl) = [0]                  
               p(first) = [1] x1 + [1] x2 + [0]
            p(n__first) = [1] x1 + [1] x2 + [0]
                p(n__s) = [1] x1 + [0]         
            p(n__terms) = [1] x1 + [5]         
                 p(nil) = [0]                  
               p(recip) = [1] x1 + [0]         
                   p(s) = [1] x1 + [0]         
                 p(sqr) = [0]                  
               p(terms) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
                    activate(X) = [1] X + [4]       
                                > [1] X + [0]       
                                = X                 
          
          activate(n__terms(X)) = [1] X + [9]       
                                > [1] X + [4]       
                                = terms(activate(X))
          
          
          Following rules are (at-least) weakly oriented:
          activate(n__first(X1,X2)) =  [1] X1 + [1] X2 + [4]                
                                    >= [1] X1 + [1] X2 + [8]                
                                    =  first(activate(X1),activate(X2))     
          
                  activate(n__s(X)) =  [1] X + [4]                          
                                    >= [1] X + [4]                          
                                    =  s(activate(X))                       
          
                         add(0(),X) =  [2] X + [0]                          
                                    >= [1] X + [0]                          
                                    =  X                                    
          
                           dbl(0()) =  [0]                                  
                                    >= [0]                                  
                                    =  0()                                  
          
                       first(X1,X2) =  [1] X1 + [1] X2 + [0]                
                                    >= [1] X1 + [1] X2 + [0]                
                                    =  n__first(X1,X2)                      
          
                       first(0(),X) =  [1] X + [0]                          
                                    >= [0]                                  
                                    =  nil()                                
          
                               s(X) =  [1] X + [0]                          
                                    >= [1] X + [0]                          
                                    =  n__s(X)                              
          
                           sqr(0()) =  [0]                                  
                                    >= [0]                                  
                                    =  0()                                  
          
                           terms(N) =  [1] N + [0]                          
                                    >= [1] N + [5]                          
                                    =  cons(recip(sqr(N)),n__terms(n__s(N)))
          
                           terms(X) =  [1] X + [0]                          
                                    >= [1] X + [5]                          
                                    =  n__terms(X)                          
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:3: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            add(0(),X) -> X
            dbl(0()) -> 0()
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            s(X) -> n__s(X)
            sqr(0()) -> 0()
            terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
            terms(X) -> n__terms(X)
        - Weak TRS:
            activate(X) -> X
            activate(n__terms(X)) -> terms(activate(X))
        - Signature:
            {activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
            ,cons,n__first,n__s,n__terms,nil,recip}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(cons) = {1},
            uargs(first) = {1,2},
            uargs(recip) = {1},
            uargs(s) = {1},
            uargs(terms) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [2]                  
            p(activate) = [8] x1 + [0]         
                 p(add) = [2] x2 + [4]         
                p(cons) = [1] x1 + [0]         
                 p(dbl) = [5] x1 + [7]         
               p(first) = [1] x1 + [1] x2 + [0]
            p(n__first) = [1] x1 + [1] x2 + [0]
                p(n__s) = [1] x1 + [0]         
            p(n__terms) = [1] x1 + [0]         
                 p(nil) = [0]                  
               p(recip) = [1] x1 + [0]         
                   p(s) = [1] x1 + [0]         
                 p(sqr) = [0]                  
               p(terms) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
            add(0(),X) = [2] X + [4]
                       > [1] X + [0]
                       = X          
          
              dbl(0()) = [17]       
                       > [2]        
                       = 0()        
          
          first(0(),X) = [1] X + [2]
                       > [0]        
                       = nil()      
          
          
          Following rules are (at-least) weakly oriented:
                        activate(X) =  [8] X + [0]                          
                                    >= [1] X + [0]                          
                                    =  X                                    
          
          activate(n__first(X1,X2)) =  [8] X1 + [8] X2 + [0]                
                                    >= [8] X1 + [8] X2 + [0]                
                                    =  first(activate(X1),activate(X2))     
          
                  activate(n__s(X)) =  [8] X + [0]                          
                                    >= [8] X + [0]                          
                                    =  s(activate(X))                       
          
              activate(n__terms(X)) =  [8] X + [0]                          
                                    >= [8] X + [0]                          
                                    =  terms(activate(X))                   
          
                       first(X1,X2) =  [1] X1 + [1] X2 + [0]                
                                    >= [1] X1 + [1] X2 + [0]                
                                    =  n__first(X1,X2)                      
          
                               s(X) =  [1] X + [0]                          
                                    >= [1] X + [0]                          
                                    =  n__s(X)                              
          
                           sqr(0()) =  [0]                                  
                                    >= [2]                                  
                                    =  0()                                  
          
                           terms(N) =  [1] N + [0]                          
                                    >= [0]                                  
                                    =  cons(recip(sqr(N)),n__terms(n__s(N)))
          
                           terms(X) =  [1] X + [0]                          
                                    >= [1] X + [0]                          
                                    =  n__terms(X)                          
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:4: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            first(X1,X2) -> n__first(X1,X2)
            s(X) -> n__s(X)
            sqr(0()) -> 0()
            terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
            terms(X) -> n__terms(X)
        - Weak TRS:
            activate(X) -> X
            activate(n__terms(X)) -> terms(activate(X))
            add(0(),X) -> X
            dbl(0()) -> 0()
            first(0(),X) -> nil()
        - Signature:
            {activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
            ,cons,n__first,n__s,n__terms,nil,recip}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(cons) = {1},
            uargs(first) = {1,2},
            uargs(recip) = {1},
            uargs(s) = {1},
            uargs(terms) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
            p(activate) = [4] x1 + [0]         
                 p(add) = [4] x1 + [8] x2 + [1]
                p(cons) = [1] x1 + [1] x2 + [1]
                 p(dbl) = [8] x1 + [7]         
               p(first) = [1] x1 + [1] x2 + [2]
            p(n__first) = [1] x1 + [1] x2 + [0]
                p(n__s) = [1] x1 + [1]         
            p(n__terms) = [1] x1 + [0]         
                 p(nil) = [0]                  
               p(recip) = [1] x1 + [3]         
                   p(s) = [1] x1 + [1]         
                 p(sqr) = [14]                 
               p(terms) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
          activate(n__s(X)) = [4] X + [4]          
                            > [4] X + [1]          
                            = s(activate(X))       
          
               first(X1,X2) = [1] X1 + [1] X2 + [2]
                            > [1] X1 + [1] X2 + [0]
                            = n__first(X1,X2)      
          
                   sqr(0()) = [14]                 
                            > [0]                  
                            = 0()                  
          
          
          Following rules are (at-least) weakly oriented:
                        activate(X) =  [4] X + [0]                          
                                    >= [1] X + [0]                          
                                    =  X                                    
          
          activate(n__first(X1,X2)) =  [4] X1 + [4] X2 + [0]                
                                    >= [4] X1 + [4] X2 + [2]                
                                    =  first(activate(X1),activate(X2))     
          
              activate(n__terms(X)) =  [4] X + [0]                          
                                    >= [4] X + [0]                          
                                    =  terms(activate(X))                   
          
                         add(0(),X) =  [8] X + [1]                          
                                    >= [1] X + [0]                          
                                    =  X                                    
          
                           dbl(0()) =  [7]                                  
                                    >= [0]                                  
                                    =  0()                                  
          
                       first(0(),X) =  [1] X + [2]                          
                                    >= [0]                                  
                                    =  nil()                                
          
                               s(X) =  [1] X + [1]                          
                                    >= [1] X + [1]                          
                                    =  n__s(X)                              
          
                           terms(N) =  [1] N + [0]                          
                                    >= [1] N + [19]                         
                                    =  cons(recip(sqr(N)),n__terms(n__s(N)))
          
                           terms(X) =  [1] X + [0]                          
                                    >= [1] X + [0]                          
                                    =  n__terms(X)                          
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:5: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            s(X) -> n__s(X)
            terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
            terms(X) -> n__terms(X)
        - Weak TRS:
            activate(X) -> X
            activate(n__s(X)) -> s(activate(X))
            activate(n__terms(X)) -> terms(activate(X))
            add(0(),X) -> X
            dbl(0()) -> 0()
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            sqr(0()) -> 0()
        - Signature:
            {activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
            ,cons,n__first,n__s,n__terms,nil,recip}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(cons) = {1},
            uargs(first) = {1,2},
            uargs(recip) = {1},
            uargs(s) = {1},
            uargs(terms) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
            p(activate) = [11] x1 + [0]        
                 p(add) = [1] x2 + [0]         
                p(cons) = [1] x1 + [1] x2 + [0]
                 p(dbl) = [0]                  
               p(first) = [1] x1 + [1] x2 + [0]
            p(n__first) = [1] x1 + [1] x2 + [0]
                p(n__s) = [1] x1 + [0]         
            p(n__terms) = [1] x1 + [1]         
                 p(nil) = [0]                  
               p(recip) = [1] x1 + [0]         
                   p(s) = [1] x1 + [0]         
                 p(sqr) = [0]                  
               p(terms) = [1] x1 + [11]        
          
          Following rules are strictly oriented:
          terms(N) = [1] N + [11]                         
                   > [1] N + [1]                          
                   = cons(recip(sqr(N)),n__terms(n__s(N)))
          
          terms(X) = [1] X + [11]                         
                   > [1] X + [1]                          
                   = n__terms(X)                          
          
          
          Following rules are (at-least) weakly oriented:
                        activate(X) =  [11] X + [0]                    
                                    >= [1] X + [0]                     
                                    =  X                               
          
          activate(n__first(X1,X2)) =  [11] X1 + [11] X2 + [0]         
                                    >= [11] X1 + [11] X2 + [0]         
                                    =  first(activate(X1),activate(X2))
          
                  activate(n__s(X)) =  [11] X + [0]                    
                                    >= [11] X + [0]                    
                                    =  s(activate(X))                  
          
              activate(n__terms(X)) =  [11] X + [11]                   
                                    >= [11] X + [11]                   
                                    =  terms(activate(X))              
          
                         add(0(),X) =  [1] X + [0]                     
                                    >= [1] X + [0]                     
                                    =  X                               
          
                           dbl(0()) =  [0]                             
                                    >= [0]                             
                                    =  0()                             
          
                       first(X1,X2) =  [1] X1 + [1] X2 + [0]           
                                    >= [1] X1 + [1] X2 + [0]           
                                    =  n__first(X1,X2)                 
          
                       first(0(),X) =  [1] X + [0]                     
                                    >= [0]                             
                                    =  nil()                           
          
                               s(X) =  [1] X + [0]                     
                                    >= [1] X + [0]                     
                                    =  n__s(X)                         
          
                           sqr(0()) =  [0]                             
                                    >= [0]                             
                                    =  0()                             
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:6: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            s(X) -> n__s(X)
        - Weak TRS:
            activate(X) -> X
            activate(n__s(X)) -> s(activate(X))
            activate(n__terms(X)) -> terms(activate(X))
            add(0(),X) -> X
            dbl(0()) -> 0()
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            sqr(0()) -> 0()
            terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
            terms(X) -> n__terms(X)
        - Signature:
            {activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
            ,cons,n__first,n__s,n__terms,nil,recip}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(cons) = {1},
            uargs(first) = {1,2},
            uargs(recip) = {1},
            uargs(s) = {1},
            uargs(terms) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [4]                  
            p(activate) = [2] x1 + [0]         
                 p(add) = [4] x1 + [2] x2 + [4]
                p(cons) = [1] x1 + [0]         
                 p(dbl) = [1] x1 + [4]         
               p(first) = [1] x1 + [1] x2 + [1]
            p(n__first) = [1] x1 + [1] x2 + [0]
                p(n__s) = [1] x1 + [1]         
            p(n__terms) = [1] x1 + [6]         
                 p(nil) = [4]                  
               p(recip) = [1] x1 + [5]         
                   p(s) = [1] x1 + [2]         
                 p(sqr) = [1] x1 + [4]         
               p(terms) = [1] x1 + [12]        
          
          Following rules are strictly oriented:
          s(X) = [1] X + [2]
               > [1] X + [1]
               = n__s(X)    
          
          
          Following rules are (at-least) weakly oriented:
                        activate(X) =  [2] X + [0]                          
                                    >= [1] X + [0]                          
                                    =  X                                    
          
          activate(n__first(X1,X2)) =  [2] X1 + [2] X2 + [0]                
                                    >= [2] X1 + [2] X2 + [1]                
                                    =  first(activate(X1),activate(X2))     
          
                  activate(n__s(X)) =  [2] X + [2]                          
                                    >= [2] X + [2]                          
                                    =  s(activate(X))                       
          
              activate(n__terms(X)) =  [2] X + [12]                         
                                    >= [2] X + [12]                         
                                    =  terms(activate(X))                   
          
                         add(0(),X) =  [2] X + [20]                         
                                    >= [1] X + [0]                          
                                    =  X                                    
          
                           dbl(0()) =  [8]                                  
                                    >= [4]                                  
                                    =  0()                                  
          
                       first(X1,X2) =  [1] X1 + [1] X2 + [1]                
                                    >= [1] X1 + [1] X2 + [0]                
                                    =  n__first(X1,X2)                      
          
                       first(0(),X) =  [1] X + [5]                          
                                    >= [4]                                  
                                    =  nil()                                
          
                           sqr(0()) =  [8]                                  
                                    >= [4]                                  
                                    =  0()                                  
          
                           terms(N) =  [1] N + [12]                         
                                    >= [1] N + [9]                          
                                    =  cons(recip(sqr(N)),n__terms(n__s(N)))
          
                           terms(X) =  [1] X + [12]                         
                                    >= [1] X + [6]                          
                                    =  n__terms(X)                          
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:7: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
        - Weak TRS:
            activate(X) -> X
            activate(n__s(X)) -> s(activate(X))
            activate(n__terms(X)) -> terms(activate(X))
            add(0(),X) -> X
            dbl(0()) -> 0()
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            s(X) -> n__s(X)
            sqr(0()) -> 0()
            terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
            terms(X) -> n__terms(X)
        - Signature:
            {activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
            ,cons,n__first,n__s,n__terms,nil,recip}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(cons) = {1},
            uargs(first) = {1,2},
            uargs(recip) = {1},
            uargs(s) = {1},
            uargs(terms) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [9]                   
            p(activate) = [2] x1 + [1]          
                 p(add) = [1] x1 + [8] x2 + [8] 
                p(cons) = [1] x1 + [0]          
                 p(dbl) = [1] x1 + [5]          
               p(first) = [1] x1 + [1] x2 + [14]
            p(n__first) = [1] x1 + [1] x2 + [8] 
                p(n__s) = [1] x1 + [1]          
            p(n__terms) = [1] x1 + [8]          
                 p(nil) = [0]                   
               p(recip) = [1] x1 + [2]          
                   p(s) = [1] x1 + [1]          
                 p(sqr) = [1] x1 + [0]          
               p(terms) = [1] x1 + [8]          
          
          Following rules are strictly oriented:
          activate(n__first(X1,X2)) = [2] X1 + [2] X2 + [17]          
                                    > [2] X1 + [2] X2 + [16]          
                                    = first(activate(X1),activate(X2))
          
          
          Following rules are (at-least) weakly oriented:
                    activate(X) =  [2] X + [1]                          
                                >= [1] X + [0]                          
                                =  X                                    
          
              activate(n__s(X)) =  [2] X + [3]                          
                                >= [2] X + [2]                          
                                =  s(activate(X))                       
          
          activate(n__terms(X)) =  [2] X + [17]                         
                                >= [2] X + [9]                          
                                =  terms(activate(X))                   
          
                     add(0(),X) =  [8] X + [17]                         
                                >= [1] X + [0]                          
                                =  X                                    
          
                       dbl(0()) =  [14]                                 
                                >= [9]                                  
                                =  0()                                  
          
                   first(X1,X2) =  [1] X1 + [1] X2 + [14]               
                                >= [1] X1 + [1] X2 + [8]                
                                =  n__first(X1,X2)                      
          
                   first(0(),X) =  [1] X + [23]                         
                                >= [0]                                  
                                =  nil()                                
          
                           s(X) =  [1] X + [1]                          
                                >= [1] X + [1]                          
                                =  n__s(X)                              
          
                       sqr(0()) =  [9]                                  
                                >= [9]                                  
                                =  0()                                  
          
                       terms(N) =  [1] N + [8]                          
                                >= [1] N + [2]                          
                                =  cons(recip(sqr(N)),n__terms(n__s(N)))
          
                       terms(X) =  [1] X + [8]                          
                                >= [1] X + [8]                          
                                =  n__terms(X)                          
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:8: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__terms(X)) -> terms(activate(X))
            add(0(),X) -> X
            dbl(0()) -> 0()
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            s(X) -> n__s(X)
            sqr(0()) -> 0()
            terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
            terms(X) -> n__terms(X)
        - Signature:
            {activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
            ,cons,n__first,n__s,n__terms,nil,recip}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))