* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
+ Considered Problem:
- Strict TRS:
activate(X) -> X
activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
activate(n__s(X)) -> s(activate(X))
activate(n__terms(X)) -> terms(activate(X))
add(0(),X) -> X
add(s(X),Y) -> s(add(X,Y))
dbl(0()) -> 0()
dbl(s(X)) -> s(s(dbl(X)))
first(X1,X2) -> n__first(X1,X2)
first(0(),X) -> nil()
first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
s(X) -> n__s(X)
sqr(0()) -> 0()
sqr(s(X)) -> s(add(sqr(X),dbl(X)))
terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
terms(X) -> n__terms(X)
- Signature:
{activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
,cons,n__first,n__s,n__terms,nil,recip}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
activate(X) -> X
activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
activate(n__s(X)) -> s(activate(X))
activate(n__terms(X)) -> terms(activate(X))
add(0(),X) -> X
add(s(X),Y) -> s(add(X,Y))
dbl(0()) -> 0()
dbl(s(X)) -> s(s(dbl(X)))
first(X1,X2) -> n__first(X1,X2)
first(0(),X) -> nil()
first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
s(X) -> n__s(X)
sqr(0()) -> 0()
sqr(s(X)) -> s(add(sqr(X),dbl(X)))
terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
terms(X) -> n__terms(X)
- Signature:
{activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
,cons,n__first,n__s,n__terms,nil,recip}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
activate(x){x -> n__first(x,y)} =
activate(n__first(x,y)) ->^+ first(activate(x),activate(y))
= C[activate(x) = activate(x){}]
** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
activate(X) -> X
activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
activate(n__s(X)) -> s(activate(X))
activate(n__terms(X)) -> terms(activate(X))
add(0(),X) -> X
add(s(X),Y) -> s(add(X,Y))
dbl(0()) -> 0()
dbl(s(X)) -> s(s(dbl(X)))
first(X1,X2) -> n__first(X1,X2)
first(0(),X) -> nil()
first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
s(X) -> n__s(X)
sqr(0()) -> 0()
sqr(s(X)) -> s(add(sqr(X),dbl(X)))
terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
terms(X) -> n__terms(X)
- Signature:
{activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
,cons,n__first,n__s,n__terms,nil,recip}
+ Applied Processor:
InnermostRuleRemoval
+ Details:
Arguments of following rules are not normal-forms.
add(s(X),Y) -> s(add(X,Y))
dbl(s(X)) -> s(s(dbl(X)))
first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
sqr(s(X)) -> s(add(sqr(X),dbl(X)))
All above mentioned rules can be savely removed.
** Step 1.b:2: WeightGap WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
activate(X) -> X
activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
activate(n__s(X)) -> s(activate(X))
activate(n__terms(X)) -> terms(activate(X))
add(0(),X) -> X
dbl(0()) -> 0()
first(X1,X2) -> n__first(X1,X2)
first(0(),X) -> nil()
s(X) -> n__s(X)
sqr(0()) -> 0()
terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
terms(X) -> n__terms(X)
- Signature:
{activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
,cons,n__first,n__s,n__terms,nil,recip}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(cons) = {1},
uargs(first) = {1,2},
uargs(recip) = {1},
uargs(s) = {1},
uargs(terms) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(0) = [0]
p(activate) = [1] x1 + [4]
p(add) = [2] x2 + [0]
p(cons) = [1] x1 + [1] x2 + [0]
p(dbl) = [0]
p(first) = [1] x1 + [1] x2 + [0]
p(n__first) = [1] x1 + [1] x2 + [0]
p(n__s) = [1] x1 + [0]
p(n__terms) = [1] x1 + [5]
p(nil) = [0]
p(recip) = [1] x1 + [0]
p(s) = [1] x1 + [0]
p(sqr) = [0]
p(terms) = [1] x1 + [0]
Following rules are strictly oriented:
activate(X) = [1] X + [4]
> [1] X + [0]
= X
activate(n__terms(X)) = [1] X + [9]
> [1] X + [4]
= terms(activate(X))
Following rules are (at-least) weakly oriented:
activate(n__first(X1,X2)) = [1] X1 + [1] X2 + [4]
>= [1] X1 + [1] X2 + [8]
= first(activate(X1),activate(X2))
activate(n__s(X)) = [1] X + [4]
>= [1] X + [4]
= s(activate(X))
add(0(),X) = [2] X + [0]
>= [1] X + [0]
= X
dbl(0()) = [0]
>= [0]
= 0()
first(X1,X2) = [1] X1 + [1] X2 + [0]
>= [1] X1 + [1] X2 + [0]
= n__first(X1,X2)
first(0(),X) = [1] X + [0]
>= [0]
= nil()
s(X) = [1] X + [0]
>= [1] X + [0]
= n__s(X)
sqr(0()) = [0]
>= [0]
= 0()
terms(N) = [1] N + [0]
>= [1] N + [5]
= cons(recip(sqr(N)),n__terms(n__s(N)))
terms(X) = [1] X + [0]
>= [1] X + [5]
= n__terms(X)
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:3: WeightGap WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
activate(n__s(X)) -> s(activate(X))
add(0(),X) -> X
dbl(0()) -> 0()
first(X1,X2) -> n__first(X1,X2)
first(0(),X) -> nil()
s(X) -> n__s(X)
sqr(0()) -> 0()
terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
terms(X) -> n__terms(X)
- Weak TRS:
activate(X) -> X
activate(n__terms(X)) -> terms(activate(X))
- Signature:
{activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
,cons,n__first,n__s,n__terms,nil,recip}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(cons) = {1},
uargs(first) = {1,2},
uargs(recip) = {1},
uargs(s) = {1},
uargs(terms) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(0) = [2]
p(activate) = [8] x1 + [0]
p(add) = [2] x2 + [4]
p(cons) = [1] x1 + [0]
p(dbl) = [5] x1 + [7]
p(first) = [1] x1 + [1] x2 + [0]
p(n__first) = [1] x1 + [1] x2 + [0]
p(n__s) = [1] x1 + [0]
p(n__terms) = [1] x1 + [0]
p(nil) = [0]
p(recip) = [1] x1 + [0]
p(s) = [1] x1 + [0]
p(sqr) = [0]
p(terms) = [1] x1 + [0]
Following rules are strictly oriented:
add(0(),X) = [2] X + [4]
> [1] X + [0]
= X
dbl(0()) = [17]
> [2]
= 0()
first(0(),X) = [1] X + [2]
> [0]
= nil()
Following rules are (at-least) weakly oriented:
activate(X) = [8] X + [0]
>= [1] X + [0]
= X
activate(n__first(X1,X2)) = [8] X1 + [8] X2 + [0]
>= [8] X1 + [8] X2 + [0]
= first(activate(X1),activate(X2))
activate(n__s(X)) = [8] X + [0]
>= [8] X + [0]
= s(activate(X))
activate(n__terms(X)) = [8] X + [0]
>= [8] X + [0]
= terms(activate(X))
first(X1,X2) = [1] X1 + [1] X2 + [0]
>= [1] X1 + [1] X2 + [0]
= n__first(X1,X2)
s(X) = [1] X + [0]
>= [1] X + [0]
= n__s(X)
sqr(0()) = [0]
>= [2]
= 0()
terms(N) = [1] N + [0]
>= [0]
= cons(recip(sqr(N)),n__terms(n__s(N)))
terms(X) = [1] X + [0]
>= [1] X + [0]
= n__terms(X)
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:4: WeightGap WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
activate(n__s(X)) -> s(activate(X))
first(X1,X2) -> n__first(X1,X2)
s(X) -> n__s(X)
sqr(0()) -> 0()
terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
terms(X) -> n__terms(X)
- Weak TRS:
activate(X) -> X
activate(n__terms(X)) -> terms(activate(X))
add(0(),X) -> X
dbl(0()) -> 0()
first(0(),X) -> nil()
- Signature:
{activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
,cons,n__first,n__s,n__terms,nil,recip}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(cons) = {1},
uargs(first) = {1,2},
uargs(recip) = {1},
uargs(s) = {1},
uargs(terms) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(0) = [0]
p(activate) = [4] x1 + [0]
p(add) = [4] x1 + [8] x2 + [1]
p(cons) = [1] x1 + [1] x2 + [1]
p(dbl) = [8] x1 + [7]
p(first) = [1] x1 + [1] x2 + [2]
p(n__first) = [1] x1 + [1] x2 + [0]
p(n__s) = [1] x1 + [1]
p(n__terms) = [1] x1 + [0]
p(nil) = [0]
p(recip) = [1] x1 + [3]
p(s) = [1] x1 + [1]
p(sqr) = [14]
p(terms) = [1] x1 + [0]
Following rules are strictly oriented:
activate(n__s(X)) = [4] X + [4]
> [4] X + [1]
= s(activate(X))
first(X1,X2) = [1] X1 + [1] X2 + [2]
> [1] X1 + [1] X2 + [0]
= n__first(X1,X2)
sqr(0()) = [14]
> [0]
= 0()
Following rules are (at-least) weakly oriented:
activate(X) = [4] X + [0]
>= [1] X + [0]
= X
activate(n__first(X1,X2)) = [4] X1 + [4] X2 + [0]
>= [4] X1 + [4] X2 + [2]
= first(activate(X1),activate(X2))
activate(n__terms(X)) = [4] X + [0]
>= [4] X + [0]
= terms(activate(X))
add(0(),X) = [8] X + [1]
>= [1] X + [0]
= X
dbl(0()) = [7]
>= [0]
= 0()
first(0(),X) = [1] X + [2]
>= [0]
= nil()
s(X) = [1] X + [1]
>= [1] X + [1]
= n__s(X)
terms(N) = [1] N + [0]
>= [1] N + [19]
= cons(recip(sqr(N)),n__terms(n__s(N)))
terms(X) = [1] X + [0]
>= [1] X + [0]
= n__terms(X)
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:5: WeightGap WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
s(X) -> n__s(X)
terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
terms(X) -> n__terms(X)
- Weak TRS:
activate(X) -> X
activate(n__s(X)) -> s(activate(X))
activate(n__terms(X)) -> terms(activate(X))
add(0(),X) -> X
dbl(0()) -> 0()
first(X1,X2) -> n__first(X1,X2)
first(0(),X) -> nil()
sqr(0()) -> 0()
- Signature:
{activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
,cons,n__first,n__s,n__terms,nil,recip}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(cons) = {1},
uargs(first) = {1,2},
uargs(recip) = {1},
uargs(s) = {1},
uargs(terms) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(0) = [0]
p(activate) = [11] x1 + [0]
p(add) = [1] x2 + [0]
p(cons) = [1] x1 + [1] x2 + [0]
p(dbl) = [0]
p(first) = [1] x1 + [1] x2 + [0]
p(n__first) = [1] x1 + [1] x2 + [0]
p(n__s) = [1] x1 + [0]
p(n__terms) = [1] x1 + [1]
p(nil) = [0]
p(recip) = [1] x1 + [0]
p(s) = [1] x1 + [0]
p(sqr) = [0]
p(terms) = [1] x1 + [11]
Following rules are strictly oriented:
terms(N) = [1] N + [11]
> [1] N + [1]
= cons(recip(sqr(N)),n__terms(n__s(N)))
terms(X) = [1] X + [11]
> [1] X + [1]
= n__terms(X)
Following rules are (at-least) weakly oriented:
activate(X) = [11] X + [0]
>= [1] X + [0]
= X
activate(n__first(X1,X2)) = [11] X1 + [11] X2 + [0]
>= [11] X1 + [11] X2 + [0]
= first(activate(X1),activate(X2))
activate(n__s(X)) = [11] X + [0]
>= [11] X + [0]
= s(activate(X))
activate(n__terms(X)) = [11] X + [11]
>= [11] X + [11]
= terms(activate(X))
add(0(),X) = [1] X + [0]
>= [1] X + [0]
= X
dbl(0()) = [0]
>= [0]
= 0()
first(X1,X2) = [1] X1 + [1] X2 + [0]
>= [1] X1 + [1] X2 + [0]
= n__first(X1,X2)
first(0(),X) = [1] X + [0]
>= [0]
= nil()
s(X) = [1] X + [0]
>= [1] X + [0]
= n__s(X)
sqr(0()) = [0]
>= [0]
= 0()
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:6: WeightGap WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
s(X) -> n__s(X)
- Weak TRS:
activate(X) -> X
activate(n__s(X)) -> s(activate(X))
activate(n__terms(X)) -> terms(activate(X))
add(0(),X) -> X
dbl(0()) -> 0()
first(X1,X2) -> n__first(X1,X2)
first(0(),X) -> nil()
sqr(0()) -> 0()
terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
terms(X) -> n__terms(X)
- Signature:
{activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
,cons,n__first,n__s,n__terms,nil,recip}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(cons) = {1},
uargs(first) = {1,2},
uargs(recip) = {1},
uargs(s) = {1},
uargs(terms) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(0) = [4]
p(activate) = [2] x1 + [0]
p(add) = [4] x1 + [2] x2 + [4]
p(cons) = [1] x1 + [0]
p(dbl) = [1] x1 + [4]
p(first) = [1] x1 + [1] x2 + [1]
p(n__first) = [1] x1 + [1] x2 + [0]
p(n__s) = [1] x1 + [1]
p(n__terms) = [1] x1 + [6]
p(nil) = [4]
p(recip) = [1] x1 + [5]
p(s) = [1] x1 + [2]
p(sqr) = [1] x1 + [4]
p(terms) = [1] x1 + [12]
Following rules are strictly oriented:
s(X) = [1] X + [2]
> [1] X + [1]
= n__s(X)
Following rules are (at-least) weakly oriented:
activate(X) = [2] X + [0]
>= [1] X + [0]
= X
activate(n__first(X1,X2)) = [2] X1 + [2] X2 + [0]
>= [2] X1 + [2] X2 + [1]
= first(activate(X1),activate(X2))
activate(n__s(X)) = [2] X + [2]
>= [2] X + [2]
= s(activate(X))
activate(n__terms(X)) = [2] X + [12]
>= [2] X + [12]
= terms(activate(X))
add(0(),X) = [2] X + [20]
>= [1] X + [0]
= X
dbl(0()) = [8]
>= [4]
= 0()
first(X1,X2) = [1] X1 + [1] X2 + [1]
>= [1] X1 + [1] X2 + [0]
= n__first(X1,X2)
first(0(),X) = [1] X + [5]
>= [4]
= nil()
sqr(0()) = [8]
>= [4]
= 0()
terms(N) = [1] N + [12]
>= [1] N + [9]
= cons(recip(sqr(N)),n__terms(n__s(N)))
terms(X) = [1] X + [12]
>= [1] X + [6]
= n__terms(X)
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:7: WeightGap WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
- Weak TRS:
activate(X) -> X
activate(n__s(X)) -> s(activate(X))
activate(n__terms(X)) -> terms(activate(X))
add(0(),X) -> X
dbl(0()) -> 0()
first(X1,X2) -> n__first(X1,X2)
first(0(),X) -> nil()
s(X) -> n__s(X)
sqr(0()) -> 0()
terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
terms(X) -> n__terms(X)
- Signature:
{activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
,cons,n__first,n__s,n__terms,nil,recip}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(cons) = {1},
uargs(first) = {1,2},
uargs(recip) = {1},
uargs(s) = {1},
uargs(terms) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(0) = [9]
p(activate) = [2] x1 + [1]
p(add) = [1] x1 + [8] x2 + [8]
p(cons) = [1] x1 + [0]
p(dbl) = [1] x1 + [5]
p(first) = [1] x1 + [1] x2 + [14]
p(n__first) = [1] x1 + [1] x2 + [8]
p(n__s) = [1] x1 + [1]
p(n__terms) = [1] x1 + [8]
p(nil) = [0]
p(recip) = [1] x1 + [2]
p(s) = [1] x1 + [1]
p(sqr) = [1] x1 + [0]
p(terms) = [1] x1 + [8]
Following rules are strictly oriented:
activate(n__first(X1,X2)) = [2] X1 + [2] X2 + [17]
> [2] X1 + [2] X2 + [16]
= first(activate(X1),activate(X2))
Following rules are (at-least) weakly oriented:
activate(X) = [2] X + [1]
>= [1] X + [0]
= X
activate(n__s(X)) = [2] X + [3]
>= [2] X + [2]
= s(activate(X))
activate(n__terms(X)) = [2] X + [17]
>= [2] X + [9]
= terms(activate(X))
add(0(),X) = [8] X + [17]
>= [1] X + [0]
= X
dbl(0()) = [14]
>= [9]
= 0()
first(X1,X2) = [1] X1 + [1] X2 + [14]
>= [1] X1 + [1] X2 + [8]
= n__first(X1,X2)
first(0(),X) = [1] X + [23]
>= [0]
= nil()
s(X) = [1] X + [1]
>= [1] X + [1]
= n__s(X)
sqr(0()) = [9]
>= [9]
= 0()
terms(N) = [1] N + [8]
>= [1] N + [2]
= cons(recip(sqr(N)),n__terms(n__s(N)))
terms(X) = [1] X + [8]
>= [1] X + [8]
= n__terms(X)
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:8: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
activate(X) -> X
activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
activate(n__s(X)) -> s(activate(X))
activate(n__terms(X)) -> terms(activate(X))
add(0(),X) -> X
dbl(0()) -> 0()
first(X1,X2) -> n__first(X1,X2)
first(0(),X) -> nil()
s(X) -> n__s(X)
sqr(0()) -> 0()
terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
terms(X) -> n__terms(X)
- Signature:
{activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
,cons,n__first,n__s,n__terms,nil,recip}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
WORST_CASE(Omega(n^1),O(n^1))