* Step 1: Sum WORST_CASE(?,O(1))
+ Considered Problem:
- Strict TRS:
activate(X) -> X
activate(n__add(X1,X2)) -> add(X1,X2)
activate(n__dbl(X)) -> dbl(X)
activate(n__first(X1,X2)) -> first(X1,X2)
activate(n__s(X)) -> s(X)
activate(n__terms(X)) -> terms(X)
add(X1,X2) -> n__add(X1,X2)
add(0(),X) -> X
add(s(X),Y) -> s(n__add(activate(X),Y))
dbl(X) -> n__dbl(X)
dbl(0()) -> 0()
dbl(s(X)) -> s(n__s(n__dbl(activate(X))))
first(X1,X2) -> n__first(X1,X2)
first(0(),X) -> nil()
first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z)))
s(X) -> n__s(X)
sqr(0()) -> 0()
sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X))))
terms(N) -> cons(recip(sqr(N)),n__terms(s(N)))
terms(X) -> n__terms(X)
- Signature:
{activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__add/2,n__dbl/1,n__first/2,n__s/1
,n__terms/1,nil/0,recip/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
,cons,n__add,n__dbl,n__first,n__s,n__terms,nil,recip}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: InnermostRuleRemoval WORST_CASE(?,O(1))
+ Considered Problem:
- Strict TRS:
activate(X) -> X
activate(n__add(X1,X2)) -> add(X1,X2)
activate(n__dbl(X)) -> dbl(X)
activate(n__first(X1,X2)) -> first(X1,X2)
activate(n__s(X)) -> s(X)
activate(n__terms(X)) -> terms(X)
add(X1,X2) -> n__add(X1,X2)
add(0(),X) -> X
add(s(X),Y) -> s(n__add(activate(X),Y))
dbl(X) -> n__dbl(X)
dbl(0()) -> 0()
dbl(s(X)) -> s(n__s(n__dbl(activate(X))))
first(X1,X2) -> n__first(X1,X2)
first(0(),X) -> nil()
first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z)))
s(X) -> n__s(X)
sqr(0()) -> 0()
sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X))))
terms(N) -> cons(recip(sqr(N)),n__terms(s(N)))
terms(X) -> n__terms(X)
- Signature:
{activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__add/2,n__dbl/1,n__first/2,n__s/1
,n__terms/1,nil/0,recip/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
,cons,n__add,n__dbl,n__first,n__s,n__terms,nil,recip}
+ Applied Processor:
InnermostRuleRemoval
+ Details:
Arguments of following rules are not normal-forms.
add(s(X),Y) -> s(n__add(activate(X),Y))
dbl(s(X)) -> s(n__s(n__dbl(activate(X))))
first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z)))
sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X))))
All above mentioned rules can be savely removed.
* Step 3: DependencyPairs WORST_CASE(?,O(1))
+ Considered Problem:
- Strict TRS:
activate(X) -> X
activate(n__add(X1,X2)) -> add(X1,X2)
activate(n__dbl(X)) -> dbl(X)
activate(n__first(X1,X2)) -> first(X1,X2)
activate(n__s(X)) -> s(X)
activate(n__terms(X)) -> terms(X)
add(X1,X2) -> n__add(X1,X2)
add(0(),X) -> X
dbl(X) -> n__dbl(X)
dbl(0()) -> 0()
first(X1,X2) -> n__first(X1,X2)
first(0(),X) -> nil()
s(X) -> n__s(X)
sqr(0()) -> 0()
terms(N) -> cons(recip(sqr(N)),n__terms(s(N)))
terms(X) -> n__terms(X)
- Signature:
{activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__add/2,n__dbl/1,n__first/2,n__s/1
,n__terms/1,nil/0,recip/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,s,sqr,terms} and constructors {0
,cons,n__add,n__dbl,n__first,n__s,n__terms,nil,recip}
+ Applied Processor:
DependencyPairs {dpKind_ = DT}
+ Details:
We add the following dependency tuples:
Strict DPs
activate#(X) -> c_1()
activate#(n__add(X1,X2)) -> c_2(add#(X1,X2))
activate#(n__dbl(X)) -> c_3(dbl#(X))
activate#(n__first(X1,X2)) -> c_4(first#(X1,X2))
activate#(n__s(X)) -> c_5(s#(X))
activate#(n__terms(X)) -> c_6(terms#(X))
add#(X1,X2) -> c_7()
add#(0(),X) -> c_8()
dbl#(X) -> c_9()
dbl#(0()) -> c_10()
first#(X1,X2) -> c_11()
first#(0(),X) -> c_12()
s#(X) -> c_13()
sqr#(0()) -> c_14()
terms#(N) -> c_15(sqr#(N),s#(N))
terms#(X) -> c_16()
Weak DPs
and mark the set of starting terms.
* Step 4: UsableRules WORST_CASE(?,O(1))
+ Considered Problem:
- Strict DPs:
activate#(X) -> c_1()
activate#(n__add(X1,X2)) -> c_2(add#(X1,X2))
activate#(n__dbl(X)) -> c_3(dbl#(X))
activate#(n__first(X1,X2)) -> c_4(first#(X1,X2))
activate#(n__s(X)) -> c_5(s#(X))
activate#(n__terms(X)) -> c_6(terms#(X))
add#(X1,X2) -> c_7()
add#(0(),X) -> c_8()
dbl#(X) -> c_9()
dbl#(0()) -> c_10()
first#(X1,X2) -> c_11()
first#(0(),X) -> c_12()
s#(X) -> c_13()
sqr#(0()) -> c_14()
terms#(N) -> c_15(sqr#(N),s#(N))
terms#(X) -> c_16()
- Weak TRS:
activate(X) -> X
activate(n__add(X1,X2)) -> add(X1,X2)
activate(n__dbl(X)) -> dbl(X)
activate(n__first(X1,X2)) -> first(X1,X2)
activate(n__s(X)) -> s(X)
activate(n__terms(X)) -> terms(X)
add(X1,X2) -> n__add(X1,X2)
add(0(),X) -> X
dbl(X) -> n__dbl(X)
dbl(0()) -> 0()
first(X1,X2) -> n__first(X1,X2)
first(0(),X) -> nil()
s(X) -> n__s(X)
sqr(0()) -> 0()
terms(N) -> cons(recip(sqr(N)),n__terms(s(N)))
terms(X) -> n__terms(X)
- Signature:
{activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,s#/1,sqr#/1
,terms#/1} / {0/0,cons/2,n__add/2,n__dbl/1,n__first/2,n__s/1,n__terms/1,nil/0,recip/1,c_1/0,c_2/1,c_3/1
,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0,c_14/0,c_15/2,c_16/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate#,add#,dbl#,first#,s#,sqr#
,terms#} and constructors {0,cons,n__add,n__dbl,n__first,n__s,n__terms,nil,recip}
+ Applied Processor:
UsableRules
+ Details:
We replace rewrite rules by usable rules:
activate#(X) -> c_1()
activate#(n__add(X1,X2)) -> c_2(add#(X1,X2))
activate#(n__dbl(X)) -> c_3(dbl#(X))
activate#(n__first(X1,X2)) -> c_4(first#(X1,X2))
activate#(n__s(X)) -> c_5(s#(X))
activate#(n__terms(X)) -> c_6(terms#(X))
add#(X1,X2) -> c_7()
add#(0(),X) -> c_8()
dbl#(X) -> c_9()
dbl#(0()) -> c_10()
first#(X1,X2) -> c_11()
first#(0(),X) -> c_12()
s#(X) -> c_13()
sqr#(0()) -> c_14()
terms#(N) -> c_15(sqr#(N),s#(N))
terms#(X) -> c_16()
* Step 5: Trivial WORST_CASE(?,O(1))
+ Considered Problem:
- Strict DPs:
activate#(X) -> c_1()
activate#(n__add(X1,X2)) -> c_2(add#(X1,X2))
activate#(n__dbl(X)) -> c_3(dbl#(X))
activate#(n__first(X1,X2)) -> c_4(first#(X1,X2))
activate#(n__s(X)) -> c_5(s#(X))
activate#(n__terms(X)) -> c_6(terms#(X))
add#(X1,X2) -> c_7()
add#(0(),X) -> c_8()
dbl#(X) -> c_9()
dbl#(0()) -> c_10()
first#(X1,X2) -> c_11()
first#(0(),X) -> c_12()
s#(X) -> c_13()
sqr#(0()) -> c_14()
terms#(N) -> c_15(sqr#(N),s#(N))
terms#(X) -> c_16()
- Signature:
{activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,s#/1,sqr#/1
,terms#/1} / {0/0,cons/2,n__add/2,n__dbl/1,n__first/2,n__s/1,n__terms/1,nil/0,recip/1,c_1/0,c_2/1,c_3/1
,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0,c_14/0,c_15/2,c_16/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate#,add#,dbl#,first#,s#,sqr#
,terms#} and constructors {0,cons,n__add,n__dbl,n__first,n__s,n__terms,nil,recip}
+ Applied Processor:
Trivial
+ Details:
Consider the dependency graph
1:S:activate#(X) -> c_1()
2:S:activate#(n__add(X1,X2)) -> c_2(add#(X1,X2))
-->_1 add#(0(),X) -> c_8():8
-->_1 add#(X1,X2) -> c_7():7
3:S:activate#(n__dbl(X)) -> c_3(dbl#(X))
-->_1 dbl#(0()) -> c_10():10
-->_1 dbl#(X) -> c_9():9
4:S:activate#(n__first(X1,X2)) -> c_4(first#(X1,X2))
-->_1 first#(0(),X) -> c_12():12
-->_1 first#(X1,X2) -> c_11():11
5:S:activate#(n__s(X)) -> c_5(s#(X))
-->_1 s#(X) -> c_13():13
6:S:activate#(n__terms(X)) -> c_6(terms#(X))
-->_1 terms#(N) -> c_15(sqr#(N),s#(N)):15
-->_1 terms#(X) -> c_16():16
7:S:add#(X1,X2) -> c_7()
8:S:add#(0(),X) -> c_8()
9:S:dbl#(X) -> c_9()
10:S:dbl#(0()) -> c_10()
11:S:first#(X1,X2) -> c_11()
12:S:first#(0(),X) -> c_12()
13:S:s#(X) -> c_13()
14:S:sqr#(0()) -> c_14()
15:S:terms#(N) -> c_15(sqr#(N),s#(N))
-->_1 sqr#(0()) -> c_14():14
-->_2 s#(X) -> c_13():13
16:S:terms#(X) -> c_16()
The dependency graph contains no loops, we remove all dependency pairs.
* Step 6: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Signature:
{activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,s#/1,sqr#/1
,terms#/1} / {0/0,cons/2,n__add/2,n__dbl/1,n__first/2,n__s/1,n__terms/1,nil/0,recip/1,c_1/0,c_2/1,c_3/1
,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0,c_14/0,c_15/2,c_16/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate#,add#,dbl#,first#,s#,sqr#
,terms#} and constructors {0,cons,n__add,n__dbl,n__first,n__s,n__terms,nil,recip}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
WORST_CASE(?,O(1))