* Step 1: Sum WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict TRS:
            add(0(),X) -> X
            add(s(),Y) -> s()
            dbl(0()) -> 0()
            dbl(s()) -> s()
            first(0(),X) -> nil()
            first(s(),cons(Y)) -> cons(Y)
            sqr(0()) -> 0()
            sqr(s()) -> s()
            terms(N) -> cons(recip(sqr(N)))
        - Signature:
            {add/2,dbl/1,first/2,sqr/1,terms/1} / {0/0,cons/1,nil/0,recip/1,s/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add,dbl,first,sqr,terms} and constructors {0,cons,nil
            ,recip,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DependencyPairs WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict TRS:
            add(0(),X) -> X
            add(s(),Y) -> s()
            dbl(0()) -> 0()
            dbl(s()) -> s()
            first(0(),X) -> nil()
            first(s(),cons(Y)) -> cons(Y)
            sqr(0()) -> 0()
            sqr(s()) -> s()
            terms(N) -> cons(recip(sqr(N)))
        - Signature:
            {add/2,dbl/1,first/2,sqr/1,terms/1} / {0/0,cons/1,nil/0,recip/1,s/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add,dbl,first,sqr,terms} and constructors {0,cons,nil
            ,recip,s}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          add#(0(),X) -> c_1()
          add#(s(),Y) -> c_2()
          dbl#(0()) -> c_3()
          dbl#(s()) -> c_4()
          first#(0(),X) -> c_5()
          first#(s(),cons(Y)) -> c_6()
          sqr#(0()) -> c_7()
          sqr#(s()) -> c_8()
          terms#(N) -> c_9(sqr#(N))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 3: UsableRules WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            add#(0(),X) -> c_1()
            add#(s(),Y) -> c_2()
            dbl#(0()) -> c_3()
            dbl#(s()) -> c_4()
            first#(0(),X) -> c_5()
            first#(s(),cons(Y)) -> c_6()
            sqr#(0()) -> c_7()
            sqr#(s()) -> c_8()
            terms#(N) -> c_9(sqr#(N))
        - Weak TRS:
            add(0(),X) -> X
            add(s(),Y) -> s()
            dbl(0()) -> 0()
            dbl(s()) -> s()
            first(0(),X) -> nil()
            first(s(),cons(Y)) -> cons(Y)
            sqr(0()) -> 0()
            sqr(s()) -> s()
            terms(N) -> cons(recip(sqr(N)))
        - Signature:
            {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/1,nil/0,recip/1,s/0
            ,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons
            ,nil,recip,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          add#(0(),X) -> c_1()
          add#(s(),Y) -> c_2()
          dbl#(0()) -> c_3()
          dbl#(s()) -> c_4()
          first#(0(),X) -> c_5()
          first#(s(),cons(Y)) -> c_6()
          sqr#(0()) -> c_7()
          sqr#(s()) -> c_8()
          terms#(N) -> c_9(sqr#(N))
* Step 4: Trivial WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            add#(0(),X) -> c_1()
            add#(s(),Y) -> c_2()
            dbl#(0()) -> c_3()
            dbl#(s()) -> c_4()
            first#(0(),X) -> c_5()
            first#(s(),cons(Y)) -> c_6()
            sqr#(0()) -> c_7()
            sqr#(s()) -> c_8()
            terms#(N) -> c_9(sqr#(N))
        - Signature:
            {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/1,nil/0,recip/1,s/0
            ,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons
            ,nil,recip,s}
    + Applied Processor:
        Trivial
    + Details:
        Consider the dependency graph
          1:S:add#(0(),X) -> c_1()
             
          
          2:S:add#(s(),Y) -> c_2()
             
          
          3:S:dbl#(0()) -> c_3()
             
          
          4:S:dbl#(s()) -> c_4()
             
          
          5:S:first#(0(),X) -> c_5()
             
          
          6:S:first#(s(),cons(Y)) -> c_6()
             
          
          7:S:sqr#(0()) -> c_7()
             
          
          8:S:sqr#(s()) -> c_8()
             
          
          9:S:terms#(N) -> c_9(sqr#(N))
             -->_1 sqr#(s()) -> c_8():8
             -->_1 sqr#(0()) -> c_7():7
          
        The dependency graph contains no loops, we remove all dependency pairs.
* Step 5: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/1,nil/0,recip/1,s/0
            ,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons
            ,nil,recip,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(1))