* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__dbl(X) -> dbl(X)
            a__dbl(0()) -> 0()
            a__dbl(s(X)) -> s(s(dbl(X)))
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__sqr(X) -> sqr(X)
            a__sqr(0()) -> 0()
            a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
            a__terms(X) -> terms(X)
            mark(0()) -> 0()
            mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(dbl(X)) -> a__dbl(mark(X))
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(nil()) -> nil()
            mark(recip(X)) -> recip(mark(X))
            mark(s(X)) -> s(X)
            mark(sqr(X)) -> a__sqr(mark(X))
            mark(terms(X)) -> a__terms(mark(X))
        - Signature:
            {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1
            ,s/1,sqr/1,terms/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__dbl,a__first,a__sqr,a__terms
            ,mark} and constructors {0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__dbl(X) -> dbl(X)
            a__dbl(0()) -> 0()
            a__dbl(s(X)) -> s(s(dbl(X)))
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__sqr(X) -> sqr(X)
            a__sqr(0()) -> 0()
            a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
            a__terms(X) -> terms(X)
            mark(0()) -> 0()
            mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(dbl(X)) -> a__dbl(mark(X))
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(nil()) -> nil()
            mark(recip(X)) -> recip(mark(X))
            mark(s(X)) -> s(X)
            mark(sqr(X)) -> a__sqr(mark(X))
            mark(terms(X)) -> a__terms(mark(X))
        - Signature:
            {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1
            ,s/1,sqr/1,terms/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__dbl,a__first,a__sqr,a__terms
            ,mark} and constructors {0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          mark(x){x -> add(x,y)} =
            mark(add(x,y)) ->^+ a__add(mark(x),mark(y))
              = C[mark(x) = mark(x){}]

** Step 1.b:1: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__dbl(X) -> dbl(X)
            a__dbl(0()) -> 0()
            a__dbl(s(X)) -> s(s(dbl(X)))
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__sqr(X) -> sqr(X)
            a__sqr(0()) -> 0()
            a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
            a__terms(X) -> terms(X)
            mark(0()) -> 0()
            mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(dbl(X)) -> a__dbl(mark(X))
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(nil()) -> nil()
            mark(recip(X)) -> recip(mark(X))
            mark(s(X)) -> s(X)
            mark(sqr(X)) -> a__sqr(mark(X))
            mark(terms(X)) -> a__terms(mark(X))
        - Signature:
            {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1
            ,s/1,sqr/1,terms/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__dbl,a__first,a__sqr,a__terms
            ,mark} and constructors {0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__add) = {1,2},
            uargs(a__dbl) = {1},
            uargs(a__first) = {1,2},
            uargs(a__sqr) = {1},
            uargs(a__terms) = {1},
            uargs(cons) = {1},
            uargs(recip) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [1]                  
              p(a__add) = [1] x1 + [1] x2 + [0]
              p(a__dbl) = [1] x1 + [0]         
            p(a__first) = [1] x1 + [1] x2 + [0]
              p(a__sqr) = [1] x1 + [1]         
            p(a__terms) = [1] x1 + [0]         
                 p(add) = [0]                  
                p(cons) = [1] x1 + [0]         
                 p(dbl) = [4]                  
               p(first) = [0]                  
                p(mark) = [0]                  
                 p(nil) = [0]                  
               p(recip) = [1] x1 + [0]         
                   p(s) = [1]                  
                 p(sqr) = [0]                  
               p(terms) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
                     a__add(0(),X) = [1] X + [1]             
                                   > [0]                     
                                   = mark(X)                 
          
                   a__first(0(),X) = [1] X + [1]             
                                   > [0]                     
                                   = nil()                   
          
          a__first(s(X),cons(Y,Z)) = [1] Y + [1]             
                                   > [0]                     
                                   = cons(mark(Y),first(X,Z))
          
                         a__sqr(X) = [1] X + [1]             
                                   > [0]                     
                                   = sqr(X)                  
          
                       a__sqr(0()) = [2]                     
                                   > [1]                     
                                   = 0()                     
          
                      a__sqr(s(X)) = [2]                     
                                   > [1]                     
                                   = s(add(sqr(X),dbl(X)))   
          
          
          Following rules are (at-least) weakly oriented:
               a__add(X1,X2) =  [1] X1 + [1] X2 + [0]                   
                             >= [0]                                     
                             =  add(X1,X2)                              
          
              a__add(s(X),Y) =  [1] Y + [1]                             
                             >= [1]                                     
                             =  s(add(X,Y))                             
          
                   a__dbl(X) =  [1] X + [0]                             
                             >= [4]                                     
                             =  dbl(X)                                  
          
                 a__dbl(0()) =  [1]                                     
                             >= [1]                                     
                             =  0()                                     
          
                a__dbl(s(X)) =  [1]                                     
                             >= [1]                                     
                             =  s(s(dbl(X)))                            
          
             a__first(X1,X2) =  [1] X1 + [1] X2 + [0]                   
                             >= [0]                                     
                             =  first(X1,X2)                            
          
                 a__terms(N) =  [1] N + [0]                             
                             >= [1]                                     
                             =  cons(recip(a__sqr(mark(N))),terms(s(N)))
          
                 a__terms(X) =  [1] X + [0]                             
                             >= [1] X + [0]                             
                             =  terms(X)                                
          
                   mark(0()) =  [0]                                     
                             >= [1]                                     
                             =  0()                                     
          
            mark(add(X1,X2)) =  [0]                                     
                             >= [0]                                     
                             =  a__add(mark(X1),mark(X2))               
          
           mark(cons(X1,X2)) =  [0]                                     
                             >= [0]                                     
                             =  cons(mark(X1),X2)                       
          
                mark(dbl(X)) =  [0]                                     
                             >= [0]                                     
                             =  a__dbl(mark(X))                         
          
          mark(first(X1,X2)) =  [0]                                     
                             >= [0]                                     
                             =  a__first(mark(X1),mark(X2))             
          
                 mark(nil()) =  [0]                                     
                             >= [0]                                     
                             =  nil()                                   
          
              mark(recip(X)) =  [0]                                     
                             >= [0]                                     
                             =  recip(mark(X))                          
          
                  mark(s(X)) =  [0]                                     
                             >= [1]                                     
                             =  s(X)                                    
          
                mark(sqr(X)) =  [0]                                     
                             >= [1]                                     
                             =  a__sqr(mark(X))                         
          
              mark(terms(X)) =  [0]                                     
                             >= [0]                                     
                             =  a__terms(mark(X))                       
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:2: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(s(X),Y) -> s(add(X,Y))
            a__dbl(X) -> dbl(X)
            a__dbl(0()) -> 0()
            a__dbl(s(X)) -> s(s(dbl(X)))
            a__first(X1,X2) -> first(X1,X2)
            a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
            a__terms(X) -> terms(X)
            mark(0()) -> 0()
            mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(dbl(X)) -> a__dbl(mark(X))
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(nil()) -> nil()
            mark(recip(X)) -> recip(mark(X))
            mark(s(X)) -> s(X)
            mark(sqr(X)) -> a__sqr(mark(X))
            mark(terms(X)) -> a__terms(mark(X))
        - Weak TRS:
            a__add(0(),X) -> mark(X)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__sqr(X) -> sqr(X)
            a__sqr(0()) -> 0()
            a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1
            ,s/1,sqr/1,terms/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__dbl,a__first,a__sqr,a__terms
            ,mark} and constructors {0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__add) = {1,2},
            uargs(a__dbl) = {1},
            uargs(a__first) = {1,2},
            uargs(a__sqr) = {1},
            uargs(a__terms) = {1},
            uargs(cons) = {1},
            uargs(recip) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [6]                  
              p(a__add) = [1] x1 + [1] x2 + [4]
              p(a__dbl) = [1] x1 + [0]         
            p(a__first) = [1] x1 + [1] x2 + [0]
              p(a__sqr) = [1] x1 + [0]         
            p(a__terms) = [1] x1 + [0]         
                 p(add) = [0]                  
                p(cons) = [1] x1 + [5]         
                 p(dbl) = [4]                  
               p(first) = [1] x1 + [1] x2 + [0]
                p(mark) = [4]                  
                 p(nil) = [6]                  
               p(recip) = [1] x1 + [5]         
                   p(s) = [4]                  
                 p(sqr) = [0]                  
               p(terms) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
           a__add(X1,X2) = [1] X1 + [1] X2 + [4]
                         > [0]                  
                         = add(X1,X2)           
          
          a__add(s(X),Y) = [1] Y + [8]          
                         > [4]                  
                         = s(add(X,Y))          
          
          
          Following rules are (at-least) weakly oriented:
                     a__add(0(),X) =  [1] X + [10]                            
                                   >= [4]                                     
                                   =  mark(X)                                 
          
                         a__dbl(X) =  [1] X + [0]                             
                                   >= [4]                                     
                                   =  dbl(X)                                  
          
                       a__dbl(0()) =  [6]                                     
                                   >= [6]                                     
                                   =  0()                                     
          
                      a__dbl(s(X)) =  [4]                                     
                                   >= [4]                                     
                                   =  s(s(dbl(X)))                            
          
                   a__first(X1,X2) =  [1] X1 + [1] X2 + [0]                   
                                   >= [1] X1 + [1] X2 + [0]                   
                                   =  first(X1,X2)                            
          
                   a__first(0(),X) =  [1] X + [6]                             
                                   >= [6]                                     
                                   =  nil()                                   
          
          a__first(s(X),cons(Y,Z)) =  [1] Y + [9]                             
                                   >= [9]                                     
                                   =  cons(mark(Y),first(X,Z))                
          
                         a__sqr(X) =  [1] X + [0]                             
                                   >= [0]                                     
                                   =  sqr(X)                                  
          
                       a__sqr(0()) =  [6]                                     
                                   >= [6]                                     
                                   =  0()                                     
          
                      a__sqr(s(X)) =  [4]                                     
                                   >= [4]                                     
                                   =  s(add(sqr(X),dbl(X)))                   
          
                       a__terms(N) =  [1] N + [0]                             
                                   >= [14]                                    
                                   =  cons(recip(a__sqr(mark(N))),terms(s(N)))
          
                       a__terms(X) =  [1] X + [0]                             
                                   >= [1] X + [0]                             
                                   =  terms(X)                                
          
                         mark(0()) =  [4]                                     
                                   >= [6]                                     
                                   =  0()                                     
          
                  mark(add(X1,X2)) =  [4]                                     
                                   >= [12]                                    
                                   =  a__add(mark(X1),mark(X2))               
          
                 mark(cons(X1,X2)) =  [4]                                     
                                   >= [9]                                     
                                   =  cons(mark(X1),X2)                       
          
                      mark(dbl(X)) =  [4]                                     
                                   >= [4]                                     
                                   =  a__dbl(mark(X))                         
          
                mark(first(X1,X2)) =  [4]                                     
                                   >= [8]                                     
                                   =  a__first(mark(X1),mark(X2))             
          
                       mark(nil()) =  [4]                                     
                                   >= [6]                                     
                                   =  nil()                                   
          
                    mark(recip(X)) =  [4]                                     
                                   >= [9]                                     
                                   =  recip(mark(X))                          
          
                        mark(s(X)) =  [4]                                     
                                   >= [4]                                     
                                   =  s(X)                                    
          
                      mark(sqr(X)) =  [4]                                     
                                   >= [4]                                     
                                   =  a__sqr(mark(X))                         
          
                    mark(terms(X)) =  [4]                                     
                                   >= [4]                                     
                                   =  a__terms(mark(X))                       
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:3: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__dbl(X) -> dbl(X)
            a__dbl(0()) -> 0()
            a__dbl(s(X)) -> s(s(dbl(X)))
            a__first(X1,X2) -> first(X1,X2)
            a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
            a__terms(X) -> terms(X)
            mark(0()) -> 0()
            mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(dbl(X)) -> a__dbl(mark(X))
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(nil()) -> nil()
            mark(recip(X)) -> recip(mark(X))
            mark(s(X)) -> s(X)
            mark(sqr(X)) -> a__sqr(mark(X))
            mark(terms(X)) -> a__terms(mark(X))
        - Weak TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__sqr(X) -> sqr(X)
            a__sqr(0()) -> 0()
            a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        - Signature:
            {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1
            ,s/1,sqr/1,terms/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__dbl,a__first,a__sqr,a__terms
            ,mark} and constructors {0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__add) = {1,2},
            uargs(a__dbl) = {1},
            uargs(a__first) = {1,2},
            uargs(a__sqr) = {1},
            uargs(a__terms) = {1},
            uargs(cons) = {1},
            uargs(recip) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
              p(a__add) = [1] x1 + [1] x2 + [5]
              p(a__dbl) = [1] x1 + [0]         
            p(a__first) = [1] x1 + [1] x2 + [3]
              p(a__sqr) = [1] x1 + [0]         
            p(a__terms) = [1] x1 + [0]         
                 p(add) = [0]                  
                p(cons) = [1] x1 + [0]         
                 p(dbl) = [0]                  
               p(first) = [1] x1 + [1] x2 + [0]
                p(mark) = [5]                  
                 p(nil) = [3]                  
               p(recip) = [1] x1 + [2]         
                   p(s) = [2]                  
                 p(sqr) = [0]                  
               p(terms) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
          a__first(X1,X2) = [1] X1 + [1] X2 + [3]
                          > [1] X1 + [1] X2 + [0]
                          = first(X1,X2)         
          
                mark(0()) = [5]                  
                          > [0]                  
                          = 0()                  
          
              mark(nil()) = [5]                  
                          > [3]                  
                          = nil()                
          
               mark(s(X)) = [5]                  
                          > [2]                  
                          = s(X)                 
          
          
          Following rules are (at-least) weakly oriented:
                     a__add(X1,X2) =  [1] X1 + [1] X2 + [5]                   
                                   >= [0]                                     
                                   =  add(X1,X2)                              
          
                     a__add(0(),X) =  [1] X + [5]                             
                                   >= [5]                                     
                                   =  mark(X)                                 
          
                    a__add(s(X),Y) =  [1] Y + [7]                             
                                   >= [2]                                     
                                   =  s(add(X,Y))                             
          
                         a__dbl(X) =  [1] X + [0]                             
                                   >= [0]                                     
                                   =  dbl(X)                                  
          
                       a__dbl(0()) =  [0]                                     
                                   >= [0]                                     
                                   =  0()                                     
          
                      a__dbl(s(X)) =  [2]                                     
                                   >= [2]                                     
                                   =  s(s(dbl(X)))                            
          
                   a__first(0(),X) =  [1] X + [3]                             
                                   >= [3]                                     
                                   =  nil()                                   
          
          a__first(s(X),cons(Y,Z)) =  [1] Y + [5]                             
                                   >= [5]                                     
                                   =  cons(mark(Y),first(X,Z))                
          
                         a__sqr(X) =  [1] X + [0]                             
                                   >= [0]                                     
                                   =  sqr(X)                                  
          
                       a__sqr(0()) =  [0]                                     
                                   >= [0]                                     
                                   =  0()                                     
          
                      a__sqr(s(X)) =  [2]                                     
                                   >= [2]                                     
                                   =  s(add(sqr(X),dbl(X)))                   
          
                       a__terms(N) =  [1] N + [0]                             
                                   >= [7]                                     
                                   =  cons(recip(a__sqr(mark(N))),terms(s(N)))
          
                       a__terms(X) =  [1] X + [0]                             
                                   >= [1] X + [0]                             
                                   =  terms(X)                                
          
                  mark(add(X1,X2)) =  [5]                                     
                                   >= [15]                                    
                                   =  a__add(mark(X1),mark(X2))               
          
                 mark(cons(X1,X2)) =  [5]                                     
                                   >= [5]                                     
                                   =  cons(mark(X1),X2)                       
          
                      mark(dbl(X)) =  [5]                                     
                                   >= [5]                                     
                                   =  a__dbl(mark(X))                         
          
                mark(first(X1,X2)) =  [5]                                     
                                   >= [13]                                    
                                   =  a__first(mark(X1),mark(X2))             
          
                    mark(recip(X)) =  [5]                                     
                                   >= [7]                                     
                                   =  recip(mark(X))                          
          
                      mark(sqr(X)) =  [5]                                     
                                   >= [5]                                     
                                   =  a__sqr(mark(X))                         
          
                    mark(terms(X)) =  [5]                                     
                                   >= [5]                                     
                                   =  a__terms(mark(X))                       
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:4: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__dbl(X) -> dbl(X)
            a__dbl(0()) -> 0()
            a__dbl(s(X)) -> s(s(dbl(X)))
            a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
            a__terms(X) -> terms(X)
            mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(dbl(X)) -> a__dbl(mark(X))
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(recip(X)) -> recip(mark(X))
            mark(sqr(X)) -> a__sqr(mark(X))
            mark(terms(X)) -> a__terms(mark(X))
        - Weak TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__sqr(X) -> sqr(X)
            a__sqr(0()) -> 0()
            a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            mark(0()) -> 0()
            mark(nil()) -> nil()
            mark(s(X)) -> s(X)
        - Signature:
            {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1
            ,s/1,sqr/1,terms/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__dbl,a__first,a__sqr,a__terms
            ,mark} and constructors {0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__add) = {1,2},
            uargs(a__dbl) = {1},
            uargs(a__first) = {1,2},
            uargs(a__sqr) = {1},
            uargs(a__terms) = {1},
            uargs(cons) = {1},
            uargs(recip) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
              p(a__add) = [1] x1 + [1] x2 + [1]
              p(a__dbl) = [1] x1 + [0]         
            p(a__first) = [1] x1 + [1] x2 + [0]
              p(a__sqr) = [1] x1 + [0]         
            p(a__terms) = [1] x1 + [4]         
                 p(add) = [1] x2 + [0]         
                p(cons) = [1] x1 + [2]         
                 p(dbl) = [1] x1 + [0]         
               p(first) = [1] x1 + [1] x2 + [0]
                p(mark) = [0]                  
                 p(nil) = [0]                  
               p(recip) = [1] x1 + [1]         
                   p(s) = [0]                  
                 p(sqr) = [1] x1 + [0]         
               p(terms) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
          a__terms(N) = [1] N + [4]                             
                      > [3]                                     
                      = cons(recip(a__sqr(mark(N))),terms(s(N)))
          
          a__terms(X) = [1] X + [4]                             
                      > [1] X + [0]                             
                      = terms(X)                                
          
          
          Following rules are (at-least) weakly oriented:
                     a__add(X1,X2) =  [1] X1 + [1] X2 + [1]      
                                   >= [1] X2 + [0]               
                                   =  add(X1,X2)                 
          
                     a__add(0(),X) =  [1] X + [1]                
                                   >= [0]                        
                                   =  mark(X)                    
          
                    a__add(s(X),Y) =  [1] Y + [1]                
                                   >= [0]                        
                                   =  s(add(X,Y))                
          
                         a__dbl(X) =  [1] X + [0]                
                                   >= [1] X + [0]                
                                   =  dbl(X)                     
          
                       a__dbl(0()) =  [0]                        
                                   >= [0]                        
                                   =  0()                        
          
                      a__dbl(s(X)) =  [0]                        
                                   >= [0]                        
                                   =  s(s(dbl(X)))               
          
                   a__first(X1,X2) =  [1] X1 + [1] X2 + [0]      
                                   >= [1] X1 + [1] X2 + [0]      
                                   =  first(X1,X2)               
          
                   a__first(0(),X) =  [1] X + [0]                
                                   >= [0]                        
                                   =  nil()                      
          
          a__first(s(X),cons(Y,Z)) =  [1] Y + [2]                
                                   >= [2]                        
                                   =  cons(mark(Y),first(X,Z))   
          
                         a__sqr(X) =  [1] X + [0]                
                                   >= [1] X + [0]                
                                   =  sqr(X)                     
          
                       a__sqr(0()) =  [0]                        
                                   >= [0]                        
                                   =  0()                        
          
                      a__sqr(s(X)) =  [0]                        
                                   >= [0]                        
                                   =  s(add(sqr(X),dbl(X)))      
          
                         mark(0()) =  [0]                        
                                   >= [0]                        
                                   =  0()                        
          
                  mark(add(X1,X2)) =  [0]                        
                                   >= [1]                        
                                   =  a__add(mark(X1),mark(X2))  
          
                 mark(cons(X1,X2)) =  [0]                        
                                   >= [2]                        
                                   =  cons(mark(X1),X2)          
          
                      mark(dbl(X)) =  [0]                        
                                   >= [0]                        
                                   =  a__dbl(mark(X))            
          
                mark(first(X1,X2)) =  [0]                        
                                   >= [0]                        
                                   =  a__first(mark(X1),mark(X2))
          
                       mark(nil()) =  [0]                        
                                   >= [0]                        
                                   =  nil()                      
          
                    mark(recip(X)) =  [0]                        
                                   >= [1]                        
                                   =  recip(mark(X))             
          
                        mark(s(X)) =  [0]                        
                                   >= [0]                        
                                   =  s(X)                       
          
                      mark(sqr(X)) =  [0]                        
                                   >= [0]                        
                                   =  a__sqr(mark(X))            
          
                    mark(terms(X)) =  [0]                        
                                   >= [4]                        
                                   =  a__terms(mark(X))          
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:5: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__dbl(X) -> dbl(X)
            a__dbl(0()) -> 0()
            a__dbl(s(X)) -> s(s(dbl(X)))
            mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(dbl(X)) -> a__dbl(mark(X))
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(recip(X)) -> recip(mark(X))
            mark(sqr(X)) -> a__sqr(mark(X))
            mark(terms(X)) -> a__terms(mark(X))
        - Weak TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__sqr(X) -> sqr(X)
            a__sqr(0()) -> 0()
            a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
            a__terms(X) -> terms(X)
            mark(0()) -> 0()
            mark(nil()) -> nil()
            mark(s(X)) -> s(X)
        - Signature:
            {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1
            ,s/1,sqr/1,terms/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__dbl,a__first,a__sqr,a__terms
            ,mark} and constructors {0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__add) = {1,2},
            uargs(a__dbl) = {1},
            uargs(a__first) = {1,2},
            uargs(a__sqr) = {1},
            uargs(a__terms) = {1},
            uargs(cons) = {1},
            uargs(recip) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
              p(a__add) = [1] x1 + [1] x2 + [4]
              p(a__dbl) = [1] x1 + [0]         
            p(a__first) = [1] x1 + [1] x2 + [0]
              p(a__sqr) = [1] x1 + [1]         
            p(a__terms) = [1] x1 + [3]         
                 p(add) = [1] x1 + [1] x2 + [4]
                p(cons) = [1] x1 + [0]         
                 p(dbl) = [1] x1 + [2]         
               p(first) = [1] x1 + [1] x2 + [0]
                p(mark) = [1] x1 + [0]         
                 p(nil) = [0]                  
               p(recip) = [1] x1 + [2]         
                   p(s) = [1]                  
                 p(sqr) = [1] x1 + [0]         
               p(terms) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
          mark(dbl(X)) = [1] X + [2]    
                       > [1] X + [0]    
                       = a__dbl(mark(X))
          
          
          Following rules are (at-least) weakly oriented:
                     a__add(X1,X2) =  [1] X1 + [1] X2 + [4]                   
                                   >= [1] X1 + [1] X2 + [4]                   
                                   =  add(X1,X2)                              
          
                     a__add(0(),X) =  [1] X + [4]                             
                                   >= [1] X + [0]                             
                                   =  mark(X)                                 
          
                    a__add(s(X),Y) =  [1] Y + [5]                             
                                   >= [1]                                     
                                   =  s(add(X,Y))                             
          
                         a__dbl(X) =  [1] X + [0]                             
                                   >= [1] X + [2]                             
                                   =  dbl(X)                                  
          
                       a__dbl(0()) =  [0]                                     
                                   >= [0]                                     
                                   =  0()                                     
          
                      a__dbl(s(X)) =  [1]                                     
                                   >= [1]                                     
                                   =  s(s(dbl(X)))                            
          
                   a__first(X1,X2) =  [1] X1 + [1] X2 + [0]                   
                                   >= [1] X1 + [1] X2 + [0]                   
                                   =  first(X1,X2)                            
          
                   a__first(0(),X) =  [1] X + [0]                             
                                   >= [0]                                     
                                   =  nil()                                   
          
          a__first(s(X),cons(Y,Z)) =  [1] Y + [1]                             
                                   >= [1] Y + [0]                             
                                   =  cons(mark(Y),first(X,Z))                
          
                         a__sqr(X) =  [1] X + [1]                             
                                   >= [1] X + [0]                             
                                   =  sqr(X)                                  
          
                       a__sqr(0()) =  [1]                                     
                                   >= [0]                                     
                                   =  0()                                     
          
                      a__sqr(s(X)) =  [2]                                     
                                   >= [1]                                     
                                   =  s(add(sqr(X),dbl(X)))                   
          
                       a__terms(N) =  [1] N + [3]                             
                                   >= [1] N + [3]                             
                                   =  cons(recip(a__sqr(mark(N))),terms(s(N)))
          
                       a__terms(X) =  [1] X + [3]                             
                                   >= [1] X + [0]                             
                                   =  terms(X)                                
          
                         mark(0()) =  [0]                                     
                                   >= [0]                                     
                                   =  0()                                     
          
                  mark(add(X1,X2)) =  [1] X1 + [1] X2 + [4]                   
                                   >= [1] X1 + [1] X2 + [4]                   
                                   =  a__add(mark(X1),mark(X2))               
          
                 mark(cons(X1,X2)) =  [1] X1 + [0]                            
                                   >= [1] X1 + [0]                            
                                   =  cons(mark(X1),X2)                       
          
                mark(first(X1,X2)) =  [1] X1 + [1] X2 + [0]                   
                                   >= [1] X1 + [1] X2 + [0]                   
                                   =  a__first(mark(X1),mark(X2))             
          
                       mark(nil()) =  [0]                                     
                                   >= [0]                                     
                                   =  nil()                                   
          
                    mark(recip(X)) =  [1] X + [2]                             
                                   >= [1] X + [2]                             
                                   =  recip(mark(X))                          
          
                        mark(s(X)) =  [1]                                     
                                   >= [1]                                     
                                   =  s(X)                                    
          
                      mark(sqr(X)) =  [1] X + [0]                             
                                   >= [1] X + [1]                             
                                   =  a__sqr(mark(X))                         
          
                    mark(terms(X)) =  [1] X + [0]                             
                                   >= [1] X + [3]                             
                                   =  a__terms(mark(X))                       
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:6: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__dbl(X) -> dbl(X)
            a__dbl(0()) -> 0()
            a__dbl(s(X)) -> s(s(dbl(X)))
            mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(recip(X)) -> recip(mark(X))
            mark(sqr(X)) -> a__sqr(mark(X))
            mark(terms(X)) -> a__terms(mark(X))
        - Weak TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__sqr(X) -> sqr(X)
            a__sqr(0()) -> 0()
            a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
            a__terms(X) -> terms(X)
            mark(0()) -> 0()
            mark(dbl(X)) -> a__dbl(mark(X))
            mark(nil()) -> nil()
            mark(s(X)) -> s(X)
        - Signature:
            {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1
            ,s/1,sqr/1,terms/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__dbl,a__first,a__sqr,a__terms
            ,mark} and constructors {0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__add) = {1,2},
            uargs(a__dbl) = {1},
            uargs(a__first) = {1,2},
            uargs(a__sqr) = {1},
            uargs(a__terms) = {1},
            uargs(cons) = {1},
            uargs(recip) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [1]                  
              p(a__add) = [1] x1 + [1] x2 + [5]
              p(a__dbl) = [1] x1 + [1]         
            p(a__first) = [1] x1 + [1] x2 + [5]
              p(a__sqr) = [1] x1 + [4]         
            p(a__terms) = [1] x1 + [6]         
                 p(add) = [1] x1 + [1] x2 + [0]
                p(cons) = [1] x1 + [0]         
                 p(dbl) = [1] x1 + [4]         
               p(first) = [1] x1 + [1] x2 + [0]
                p(mark) = [1] x1 + [0]         
                 p(nil) = [1]                  
               p(recip) = [1] x1 + [1]         
                   p(s) = [0]                  
                 p(sqr) = [1] x1 + [0]         
               p(terms) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
           a__dbl(0()) = [2]         
                       > [1]         
                       = 0()         
          
          a__dbl(s(X)) = [1]         
                       > [0]         
                       = s(s(dbl(X)))
          
          
          Following rules are (at-least) weakly oriented:
                     a__add(X1,X2) =  [1] X1 + [1] X2 + [5]                   
                                   >= [1] X1 + [1] X2 + [0]                   
                                   =  add(X1,X2)                              
          
                     a__add(0(),X) =  [1] X + [6]                             
                                   >= [1] X + [0]                             
                                   =  mark(X)                                 
          
                    a__add(s(X),Y) =  [1] Y + [5]                             
                                   >= [0]                                     
                                   =  s(add(X,Y))                             
          
                         a__dbl(X) =  [1] X + [1]                             
                                   >= [1] X + [4]                             
                                   =  dbl(X)                                  
          
                   a__first(X1,X2) =  [1] X1 + [1] X2 + [5]                   
                                   >= [1] X1 + [1] X2 + [0]                   
                                   =  first(X1,X2)                            
          
                   a__first(0(),X) =  [1] X + [6]                             
                                   >= [1]                                     
                                   =  nil()                                   
          
          a__first(s(X),cons(Y,Z)) =  [1] Y + [5]                             
                                   >= [1] Y + [0]                             
                                   =  cons(mark(Y),first(X,Z))                
          
                         a__sqr(X) =  [1] X + [4]                             
                                   >= [1] X + [0]                             
                                   =  sqr(X)                                  
          
                       a__sqr(0()) =  [5]                                     
                                   >= [1]                                     
                                   =  0()                                     
          
                      a__sqr(s(X)) =  [4]                                     
                                   >= [0]                                     
                                   =  s(add(sqr(X),dbl(X)))                   
          
                       a__terms(N) =  [1] N + [6]                             
                                   >= [1] N + [5]                             
                                   =  cons(recip(a__sqr(mark(N))),terms(s(N)))
          
                       a__terms(X) =  [1] X + [6]                             
                                   >= [1] X + [0]                             
                                   =  terms(X)                                
          
                         mark(0()) =  [1]                                     
                                   >= [1]                                     
                                   =  0()                                     
          
                  mark(add(X1,X2)) =  [1] X1 + [1] X2 + [0]                   
                                   >= [1] X1 + [1] X2 + [5]                   
                                   =  a__add(mark(X1),mark(X2))               
          
                 mark(cons(X1,X2)) =  [1] X1 + [0]                            
                                   >= [1] X1 + [0]                            
                                   =  cons(mark(X1),X2)                       
          
                      mark(dbl(X)) =  [1] X + [4]                             
                                   >= [1] X + [1]                             
                                   =  a__dbl(mark(X))                         
          
                mark(first(X1,X2)) =  [1] X1 + [1] X2 + [0]                   
                                   >= [1] X1 + [1] X2 + [5]                   
                                   =  a__first(mark(X1),mark(X2))             
          
                       mark(nil()) =  [1]                                     
                                   >= [1]                                     
                                   =  nil()                                   
          
                    mark(recip(X)) =  [1] X + [1]                             
                                   >= [1] X + [1]                             
                                   =  recip(mark(X))                          
          
                        mark(s(X)) =  [0]                                     
                                   >= [0]                                     
                                   =  s(X)                                    
          
                      mark(sqr(X)) =  [1] X + [0]                             
                                   >= [1] X + [4]                             
                                   =  a__sqr(mark(X))                         
          
                    mark(terms(X)) =  [1] X + [0]                             
                                   >= [1] X + [6]                             
                                   =  a__terms(mark(X))                       
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:7: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__dbl(X) -> dbl(X)
            mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(recip(X)) -> recip(mark(X))
            mark(sqr(X)) -> a__sqr(mark(X))
            mark(terms(X)) -> a__terms(mark(X))
        - Weak TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__dbl(0()) -> 0()
            a__dbl(s(X)) -> s(s(dbl(X)))
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__sqr(X) -> sqr(X)
            a__sqr(0()) -> 0()
            a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
            a__terms(X) -> terms(X)
            mark(0()) -> 0()
            mark(dbl(X)) -> a__dbl(mark(X))
            mark(nil()) -> nil()
            mark(s(X)) -> s(X)
        - Signature:
            {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1
            ,s/1,sqr/1,terms/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__dbl,a__first,a__sqr,a__terms
            ,mark} and constructors {0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(a__add) = {1,2},
          uargs(a__dbl) = {1},
          uargs(a__first) = {1,2},
          uargs(a__sqr) = {1},
          uargs(a__terms) = {1},
          uargs(cons) = {1},
          uargs(recip) = {1}
        
        Following symbols are considered usable:
          {a__add,a__dbl,a__first,a__sqr,a__terms,mark}
        TcT has computed the following interpretation:
                 p(0) = [0]                        
                        [2]                        
            p(a__add) = [1 0] x_1 + [1 4] x_2 + [2]
                        [0 1]       [0 1]       [0]
            p(a__dbl) = [1 0] x_1 + [4]            
                        [0 1]       [2]            
          p(a__first) = [1 0] x_1 + [1 4] x_2 + [0]
                        [0 1]       [0 1]       [0]
            p(a__sqr) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
          p(a__terms) = [1 4] x_1 + [0]            
                        [0 1]       [0]            
               p(add) = [1 0] x_1 + [1 4] x_2 + [2]
                        [0 1]       [0 1]       [0]
              p(cons) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
               p(dbl) = [1 0] x_1 + [0]            
                        [0 1]       [2]            
             p(first) = [1 0] x_1 + [1 4] x_2 + [0]
                        [0 1]       [0 1]       [0]
              p(mark) = [1 4] x_1 + [0]            
                        [0 1]       [0]            
               p(nil) = [0]                        
                        [1]                        
             p(recip) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
                 p(s) = [0]                        
                        [0]                        
               p(sqr) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
             p(terms) = [1 4] x_1 + [0]            
                        [0 1]       [0]            
        
        Following rules are strictly oriented:
        a__dbl(X) = [1 0] X + [4]
                    [0 1]     [2]
                  > [1 0] X + [0]
                    [0 1]     [2]
                  = dbl(X)       
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(X1,X2) =  [1 0] X1 + [1 4] X2 + [2]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 0] X1 + [1 4] X2 + [2]               
                                    [0 1]      [0 1]      [0]               
                                 =  add(X1,X2)                              
        
                   a__add(0(),X) =  [1 4] X + [2]                           
                                    [0 1]     [2]                           
                                 >= [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 =  mark(X)                                 
        
                  a__add(s(X),Y) =  [1 4] Y + [2]                           
                                    [0 1]     [0]                           
                                 >= [0]                                     
                                    [0]                                     
                                 =  s(add(X,Y))                             
        
                     a__dbl(0()) =  [4]                                     
                                    [4]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  0()                                     
        
                    a__dbl(s(X)) =  [4]                                     
                                    [2]                                     
                                 >= [0]                                     
                                    [0]                                     
                                 =  s(s(dbl(X)))                            
        
                 a__first(X1,X2) =  [1 0] X1 + [1 4] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 0] X1 + [1 4] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 =  first(X1,X2)                            
        
                 a__first(0(),X) =  [1 4] X + [0]                           
                                    [0 1]     [2]                           
                                 >= [0]                                     
                                    [1]                                     
                                 =  nil()                                   
        
        a__first(s(X),cons(Y,Z)) =  [1 4] Y + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 4] Y + [0]                           
                                    [0 1]     [0]                           
                                 =  cons(mark(Y),first(X,Z))                
        
                       a__sqr(X) =  [1 0] X + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 0] X + [0]                           
                                    [0 1]     [0]                           
                                 =  sqr(X)                                  
        
                     a__sqr(0()) =  [0]                                     
                                    [2]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  0()                                     
        
                    a__sqr(s(X)) =  [0]                                     
                                    [0]                                     
                                 >= [0]                                     
                                    [0]                                     
                                 =  s(add(sqr(X),dbl(X)))                   
        
                     a__terms(N) =  [1 4] N + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 4] N + [0]                           
                                    [0 1]     [0]                           
                                 =  cons(recip(a__sqr(mark(N))),terms(s(N)))
        
                     a__terms(X) =  [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 =  terms(X)                                
        
                       mark(0()) =  [8]                                     
                                    [2]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  0()                                     
        
                mark(add(X1,X2)) =  [1 4] X1 + [1 8] X2 + [2]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 4] X1 + [1 8] X2 + [2]               
                                    [0 1]      [0 1]      [0]               
                                 =  a__add(mark(X1),mark(X2))               
        
               mark(cons(X1,X2)) =  [1 4] X1 + [0]                          
                                    [0 1]      [0]                          
                                 >= [1 4] X1 + [0]                          
                                    [0 1]      [0]                          
                                 =  cons(mark(X1),X2)                       
        
                    mark(dbl(X)) =  [1 4] X + [8]                           
                                    [0 1]     [2]                           
                                 >= [1 4] X + [4]                           
                                    [0 1]     [2]                           
                                 =  a__dbl(mark(X))                         
        
              mark(first(X1,X2)) =  [1 4] X1 + [1 8] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 4] X1 + [1 8] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 =  a__first(mark(X1),mark(X2))             
        
                     mark(nil()) =  [4]                                     
                                    [1]                                     
                                 >= [0]                                     
                                    [1]                                     
                                 =  nil()                                   
        
                  mark(recip(X)) =  [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 =  recip(mark(X))                          
        
                      mark(s(X)) =  [0]                                     
                                    [0]                                     
                                 >= [0]                                     
                                    [0]                                     
                                 =  s(X)                                    
        
                    mark(sqr(X)) =  [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 =  a__sqr(mark(X))                         
        
                  mark(terms(X)) =  [1 8] X + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 8] X + [0]                           
                                    [0 1]     [0]                           
                                 =  a__terms(mark(X))                       
        
** Step 1.b:8: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(recip(X)) -> recip(mark(X))
            mark(sqr(X)) -> a__sqr(mark(X))
            mark(terms(X)) -> a__terms(mark(X))
        - Weak TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__dbl(X) -> dbl(X)
            a__dbl(0()) -> 0()
            a__dbl(s(X)) -> s(s(dbl(X)))
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__sqr(X) -> sqr(X)
            a__sqr(0()) -> 0()
            a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
            a__terms(X) -> terms(X)
            mark(0()) -> 0()
            mark(dbl(X)) -> a__dbl(mark(X))
            mark(nil()) -> nil()
            mark(s(X)) -> s(X)
        - Signature:
            {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1
            ,s/1,sqr/1,terms/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__dbl,a__first,a__sqr,a__terms
            ,mark} and constructors {0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(a__add) = {1,2},
          uargs(a__dbl) = {1},
          uargs(a__first) = {1,2},
          uargs(a__sqr) = {1},
          uargs(a__terms) = {1},
          uargs(cons) = {1},
          uargs(recip) = {1}
        
        Following symbols are considered usable:
          {a__add,a__dbl,a__first,a__sqr,a__terms,mark}
        TcT has computed the following interpretation:
                 p(0) = [0]                        
                        [0]                        
            p(a__add) = [1 0] x_1 + [1 4] x_2 + [0]
                        [0 1]       [0 1]       [0]
            p(a__dbl) = [1 4] x_1 + [0]            
                        [0 1]       [1]            
          p(a__first) = [1 3] x_1 + [1 4] x_2 + [0]
                        [0 1]       [0 1]       [2]
            p(a__sqr) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
          p(a__terms) = [1 4] x_1 + [0]            
                        [0 1]       [0]            
               p(add) = [1 0] x_1 + [1 4] x_2 + [0]
                        [0 1]       [0 1]       [0]
              p(cons) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
               p(dbl) = [1 4] x_1 + [0]            
                        [0 1]       [1]            
             p(first) = [1 3] x_1 + [1 4] x_2 + [0]
                        [0 1]       [0 1]       [2]
              p(mark) = [1 4] x_1 + [0]            
                        [0 1]       [0]            
               p(nil) = [0]                        
                        [2]                        
             p(recip) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
                 p(s) = [0]                        
                        [2]                        
               p(sqr) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
             p(terms) = [1 4] x_1 + [0]            
                        [0 1]       [0]            
        
        Following rules are strictly oriented:
        mark(first(X1,X2)) = [1 7] X1 + [1 8] X2 + [8]  
                             [0 1]      [0 1]      [2]  
                           > [1 7] X1 + [1 8] X2 + [0]  
                             [0 1]      [0 1]      [2]  
                           = a__first(mark(X1),mark(X2))
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(X1,X2) =  [1 0] X1 + [1 4] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 0] X1 + [1 4] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 =  add(X1,X2)                              
        
                   a__add(0(),X) =  [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 =  mark(X)                                 
        
                  a__add(s(X),Y) =  [1 4] Y + [0]                           
                                    [0 1]     [2]                           
                                 >= [0]                                     
                                    [2]                                     
                                 =  s(add(X,Y))                             
        
                       a__dbl(X) =  [1 4] X + [0]                           
                                    [0 1]     [1]                           
                                 >= [1 4] X + [0]                           
                                    [0 1]     [1]                           
                                 =  dbl(X)                                  
        
                     a__dbl(0()) =  [0]                                     
                                    [1]                                     
                                 >= [0]                                     
                                    [0]                                     
                                 =  0()                                     
        
                    a__dbl(s(X)) =  [8]                                     
                                    [3]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  s(s(dbl(X)))                            
        
                 a__first(X1,X2) =  [1 3] X1 + [1 4] X2 + [0]               
                                    [0 1]      [0 1]      [2]               
                                 >= [1 3] X1 + [1 4] X2 + [0]               
                                    [0 1]      [0 1]      [2]               
                                 =  first(X1,X2)                            
        
                 a__first(0(),X) =  [1 4] X + [0]                           
                                    [0 1]     [2]                           
                                 >= [0]                                     
                                    [2]                                     
                                 =  nil()                                   
        
        a__first(s(X),cons(Y,Z)) =  [1 4] Y + [6]                           
                                    [0 1]     [4]                           
                                 >= [1 4] Y + [0]                           
                                    [0 1]     [0]                           
                                 =  cons(mark(Y),first(X,Z))                
        
                       a__sqr(X) =  [1 0] X + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 0] X + [0]                           
                                    [0 1]     [0]                           
                                 =  sqr(X)                                  
        
                     a__sqr(0()) =  [0]                                     
                                    [0]                                     
                                 >= [0]                                     
                                    [0]                                     
                                 =  0()                                     
        
                    a__sqr(s(X)) =  [0]                                     
                                    [2]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  s(add(sqr(X),dbl(X)))                   
        
                     a__terms(N) =  [1 4] N + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 4] N + [0]                           
                                    [0 1]     [0]                           
                                 =  cons(recip(a__sqr(mark(N))),terms(s(N)))
        
                     a__terms(X) =  [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 =  terms(X)                                
        
                       mark(0()) =  [0]                                     
                                    [0]                                     
                                 >= [0]                                     
                                    [0]                                     
                                 =  0()                                     
        
                mark(add(X1,X2)) =  [1 4] X1 + [1 8] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 4] X1 + [1 8] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 =  a__add(mark(X1),mark(X2))               
        
               mark(cons(X1,X2)) =  [1 4] X1 + [0]                          
                                    [0 1]      [0]                          
                                 >= [1 4] X1 + [0]                          
                                    [0 1]      [0]                          
                                 =  cons(mark(X1),X2)                       
        
                    mark(dbl(X)) =  [1 8] X + [4]                           
                                    [0 1]     [1]                           
                                 >= [1 8] X + [0]                           
                                    [0 1]     [1]                           
                                 =  a__dbl(mark(X))                         
        
                     mark(nil()) =  [8]                                     
                                    [2]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  nil()                                   
        
                  mark(recip(X)) =  [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 =  recip(mark(X))                          
        
                      mark(s(X)) =  [8]                                     
                                    [2]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  s(X)                                    
        
                    mark(sqr(X)) =  [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 =  a__sqr(mark(X))                         
        
                  mark(terms(X)) =  [1 8] X + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 8] X + [0]                           
                                    [0 1]     [0]                           
                                 =  a__terms(mark(X))                       
        
** Step 1.b:9: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(recip(X)) -> recip(mark(X))
            mark(sqr(X)) -> a__sqr(mark(X))
            mark(terms(X)) -> a__terms(mark(X))
        - Weak TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__dbl(X) -> dbl(X)
            a__dbl(0()) -> 0()
            a__dbl(s(X)) -> s(s(dbl(X)))
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__sqr(X) -> sqr(X)
            a__sqr(0()) -> 0()
            a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
            a__terms(X) -> terms(X)
            mark(0()) -> 0()
            mark(dbl(X)) -> a__dbl(mark(X))
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(nil()) -> nil()
            mark(s(X)) -> s(X)
        - Signature:
            {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1
            ,s/1,sqr/1,terms/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__dbl,a__first,a__sqr,a__terms
            ,mark} and constructors {0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(a__add) = {1,2},
          uargs(a__dbl) = {1},
          uargs(a__first) = {1,2},
          uargs(a__sqr) = {1},
          uargs(a__terms) = {1},
          uargs(cons) = {1},
          uargs(recip) = {1}
        
        Following symbols are considered usable:
          {a__add,a__dbl,a__first,a__sqr,a__terms,mark}
        TcT has computed the following interpretation:
                 p(0) = [0]                        
                        [2]                        
            p(a__add) = [1 4] x_1 + [1 4] x_2 + [1]
                        [0 1]       [0 1]       [0]
            p(a__dbl) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
          p(a__first) = [1 0] x_1 + [1 4] x_2 + [0]
                        [0 1]       [0 1]       [0]
            p(a__sqr) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
          p(a__terms) = [1 4] x_1 + [6]            
                        [0 1]       [2]            
               p(add) = [1 4] x_1 + [1 4] x_2 + [1]
                        [0 1]       [0 1]       [0]
              p(cons) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
               p(dbl) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
             p(first) = [1 0] x_1 + [1 4] x_2 + [0]
                        [0 1]       [0 1]       [0]
              p(mark) = [1 4] x_1 + [0]            
                        [0 1]       [0]            
               p(nil) = [0]                        
                        [2]                        
             p(recip) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
                 p(s) = [4]                        
                        [0]                        
               p(sqr) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
             p(terms) = [1 4] x_1 + [0]            
                        [0 1]       [2]            
        
        Following rules are strictly oriented:
        mark(terms(X)) = [1 8] X + [8]    
                         [0 1]     [2]    
                       > [1 8] X + [6]    
                         [0 1]     [2]    
                       = a__terms(mark(X))
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(X1,X2) =  [1 4] X1 + [1 4] X2 + [1]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 4] X1 + [1 4] X2 + [1]               
                                    [0 1]      [0 1]      [0]               
                                 =  add(X1,X2)                              
        
                   a__add(0(),X) =  [1 4] X + [9]                           
                                    [0 1]     [2]                           
                                 >= [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 =  mark(X)                                 
        
                  a__add(s(X),Y) =  [1 4] Y + [5]                           
                                    [0 1]     [0]                           
                                 >= [4]                                     
                                    [0]                                     
                                 =  s(add(X,Y))                             
        
                       a__dbl(X) =  [1 0] X + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 0] X + [0]                           
                                    [0 1]     [0]                           
                                 =  dbl(X)                                  
        
                     a__dbl(0()) =  [0]                                     
                                    [2]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  0()                                     
        
                    a__dbl(s(X)) =  [4]                                     
                                    [0]                                     
                                 >= [4]                                     
                                    [0]                                     
                                 =  s(s(dbl(X)))                            
        
                 a__first(X1,X2) =  [1 0] X1 + [1 4] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 0] X1 + [1 4] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 =  first(X1,X2)                            
        
                 a__first(0(),X) =  [1 4] X + [0]                           
                                    [0 1]     [2]                           
                                 >= [0]                                     
                                    [2]                                     
                                 =  nil()                                   
        
        a__first(s(X),cons(Y,Z)) =  [1 4] Y + [4]                           
                                    [0 1]     [0]                           
                                 >= [1 4] Y + [0]                           
                                    [0 1]     [0]                           
                                 =  cons(mark(Y),first(X,Z))                
        
                       a__sqr(X) =  [1 0] X + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 0] X + [0]                           
                                    [0 1]     [0]                           
                                 =  sqr(X)                                  
        
                     a__sqr(0()) =  [0]                                     
                                    [2]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  0()                                     
        
                    a__sqr(s(X)) =  [4]                                     
                                    [0]                                     
                                 >= [4]                                     
                                    [0]                                     
                                 =  s(add(sqr(X),dbl(X)))                   
        
                     a__terms(N) =  [1 4] N + [6]                           
                                    [0 1]     [2]                           
                                 >= [1 4] N + [0]                           
                                    [0 1]     [0]                           
                                 =  cons(recip(a__sqr(mark(N))),terms(s(N)))
        
                     a__terms(X) =  [1 4] X + [6]                           
                                    [0 1]     [2]                           
                                 >= [1 4] X + [0]                           
                                    [0 1]     [2]                           
                                 =  terms(X)                                
        
                       mark(0()) =  [8]                                     
                                    [2]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  0()                                     
        
                mark(add(X1,X2)) =  [1 8] X1 + [1 8] X2 + [1]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 8] X1 + [1 8] X2 + [1]               
                                    [0 1]      [0 1]      [0]               
                                 =  a__add(mark(X1),mark(X2))               
        
               mark(cons(X1,X2)) =  [1 4] X1 + [0]                          
                                    [0 1]      [0]                          
                                 >= [1 4] X1 + [0]                          
                                    [0 1]      [0]                          
                                 =  cons(mark(X1),X2)                       
        
                    mark(dbl(X)) =  [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 =  a__dbl(mark(X))                         
        
              mark(first(X1,X2)) =  [1 4] X1 + [1 8] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 4] X1 + [1 8] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 =  a__first(mark(X1),mark(X2))             
        
                     mark(nil()) =  [8]                                     
                                    [2]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  nil()                                   
        
                  mark(recip(X)) =  [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 =  recip(mark(X))                          
        
                      mark(s(X)) =  [4]                                     
                                    [0]                                     
                                 >= [4]                                     
                                    [0]                                     
                                 =  s(X)                                    
        
                    mark(sqr(X)) =  [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 =  a__sqr(mark(X))                         
        
** Step 1.b:10: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(recip(X)) -> recip(mark(X))
            mark(sqr(X)) -> a__sqr(mark(X))
        - Weak TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__dbl(X) -> dbl(X)
            a__dbl(0()) -> 0()
            a__dbl(s(X)) -> s(s(dbl(X)))
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__sqr(X) -> sqr(X)
            a__sqr(0()) -> 0()
            a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
            a__terms(X) -> terms(X)
            mark(0()) -> 0()
            mark(dbl(X)) -> a__dbl(mark(X))
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(nil()) -> nil()
            mark(s(X)) -> s(X)
            mark(terms(X)) -> a__terms(mark(X))
        - Signature:
            {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1
            ,s/1,sqr/1,terms/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__dbl,a__first,a__sqr,a__terms
            ,mark} and constructors {0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(a__add) = {1,2},
          uargs(a__dbl) = {1},
          uargs(a__first) = {1,2},
          uargs(a__sqr) = {1},
          uargs(a__terms) = {1},
          uargs(cons) = {1},
          uargs(recip) = {1}
        
        Following symbols are considered usable:
          {a__add,a__dbl,a__first,a__sqr,a__terms,mark}
        TcT has computed the following interpretation:
                 p(0) = [0]                        
                        [2]                        
            p(a__add) = [1 0] x_1 + [1 4] x_2 + [0]
                        [0 1]       [0 1]       [0]
            p(a__dbl) = [1 0] x_1 + [6]            
                        [0 1]       [0]            
          p(a__first) = [1 0] x_1 + [1 5] x_2 + [0]
                        [0 1]       [0 1]       [0]
            p(a__sqr) = [1 1] x_1 + [3]            
                        [0 1]       [1]            
          p(a__terms) = [1 7] x_1 + [6]            
                        [0 1]       [1]            
               p(add) = [1 0] x_1 + [1 4] x_2 + [0]
                        [0 1]       [0 1]       [0]
              p(cons) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
               p(dbl) = [1 0] x_1 + [6]            
                        [0 1]       [0]            
             p(first) = [1 0] x_1 + [1 5] x_2 + [0]
                        [0 1]       [0 1]       [0]
              p(mark) = [1 4] x_1 + [0]            
                        [0 1]       [0]            
               p(nil) = [0]                        
                        [0]                        
             p(recip) = [1 2] x_1 + [0]            
                        [0 1]       [0]            
                 p(s) = [1]                        
                        [1]                        
               p(sqr) = [1 1] x_1 + [0]            
                        [0 1]       [1]            
             p(terms) = [1 7] x_1 + [2]            
                        [0 1]       [1]            
        
        Following rules are strictly oriented:
        mark(sqr(X)) = [1 5] X + [4]  
                       [0 1]     [1]  
                     > [1 5] X + [3]  
                       [0 1]     [1]  
                     = a__sqr(mark(X))
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(X1,X2) =  [1 0] X1 + [1 4] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 0] X1 + [1 4] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 =  add(X1,X2)                              
        
                   a__add(0(),X) =  [1 4] X + [0]                           
                                    [0 1]     [2]                           
                                 >= [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 =  mark(X)                                 
        
                  a__add(s(X),Y) =  [1 4] Y + [1]                           
                                    [0 1]     [1]                           
                                 >= [1]                                     
                                    [1]                                     
                                 =  s(add(X,Y))                             
        
                       a__dbl(X) =  [1 0] X + [6]                           
                                    [0 1]     [0]                           
                                 >= [1 0] X + [6]                           
                                    [0 1]     [0]                           
                                 =  dbl(X)                                  
        
                     a__dbl(0()) =  [6]                                     
                                    [2]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  0()                                     
        
                    a__dbl(s(X)) =  [7]                                     
                                    [1]                                     
                                 >= [1]                                     
                                    [1]                                     
                                 =  s(s(dbl(X)))                            
        
                 a__first(X1,X2) =  [1 0] X1 + [1 5] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 0] X1 + [1 5] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 =  first(X1,X2)                            
        
                 a__first(0(),X) =  [1 5] X + [0]                           
                                    [0 1]     [2]                           
                                 >= [0]                                     
                                    [0]                                     
                                 =  nil()                                   
        
        a__first(s(X),cons(Y,Z)) =  [1 5] Y + [1]                           
                                    [0 1]     [1]                           
                                 >= [1 4] Y + [0]                           
                                    [0 1]     [0]                           
                                 =  cons(mark(Y),first(X,Z))                
        
                       a__sqr(X) =  [1 1] X + [3]                           
                                    [0 1]     [1]                           
                                 >= [1 1] X + [0]                           
                                    [0 1]     [1]                           
                                 =  sqr(X)                                  
        
                     a__sqr(0()) =  [5]                                     
                                    [3]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  0()                                     
        
                    a__sqr(s(X)) =  [5]                                     
                                    [2]                                     
                                 >= [1]                                     
                                    [1]                                     
                                 =  s(add(sqr(X),dbl(X)))                   
        
                     a__terms(N) =  [1 7] N + [6]                           
                                    [0 1]     [1]                           
                                 >= [1 7] N + [5]                           
                                    [0 1]     [1]                           
                                 =  cons(recip(a__sqr(mark(N))),terms(s(N)))
        
                     a__terms(X) =  [1 7] X + [6]                           
                                    [0 1]     [1]                           
                                 >= [1 7] X + [2]                           
                                    [0 1]     [1]                           
                                 =  terms(X)                                
        
                       mark(0()) =  [8]                                     
                                    [2]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  0()                                     
        
                mark(add(X1,X2)) =  [1 4] X1 + [1 8] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 4] X1 + [1 8] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 =  a__add(mark(X1),mark(X2))               
        
               mark(cons(X1,X2)) =  [1 4] X1 + [0]                          
                                    [0 1]      [0]                          
                                 >= [1 4] X1 + [0]                          
                                    [0 1]      [0]                          
                                 =  cons(mark(X1),X2)                       
        
                    mark(dbl(X)) =  [1 4] X + [6]                           
                                    [0 1]     [0]                           
                                 >= [1 4] X + [6]                           
                                    [0 1]     [0]                           
                                 =  a__dbl(mark(X))                         
        
              mark(first(X1,X2)) =  [1 4] X1 + [1 9] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 4] X1 + [1 9] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 =  a__first(mark(X1),mark(X2))             
        
                     mark(nil()) =  [0]                                     
                                    [0]                                     
                                 >= [0]                                     
                                    [0]                                     
                                 =  nil()                                   
        
                  mark(recip(X)) =  [1 6] X + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 6] X + [0]                           
                                    [0 1]     [0]                           
                                 =  recip(mark(X))                          
        
                      mark(s(X)) =  [5]                                     
                                    [1]                                     
                                 >= [1]                                     
                                    [1]                                     
                                 =  s(X)                                    
        
                  mark(terms(X)) =  [1 11] X + [6]                          
                                    [0  1]     [1]                          
                                 >= [1 11] X + [6]                          
                                    [0  1]     [1]                          
                                 =  a__terms(mark(X))                       
        
** Step 1.b:11: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(recip(X)) -> recip(mark(X))
        - Weak TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__dbl(X) -> dbl(X)
            a__dbl(0()) -> 0()
            a__dbl(s(X)) -> s(s(dbl(X)))
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__sqr(X) -> sqr(X)
            a__sqr(0()) -> 0()
            a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
            a__terms(X) -> terms(X)
            mark(0()) -> 0()
            mark(dbl(X)) -> a__dbl(mark(X))
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(nil()) -> nil()
            mark(s(X)) -> s(X)
            mark(sqr(X)) -> a__sqr(mark(X))
            mark(terms(X)) -> a__terms(mark(X))
        - Signature:
            {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1
            ,s/1,sqr/1,terms/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__dbl,a__first,a__sqr,a__terms
            ,mark} and constructors {0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(a__add) = {1,2},
          uargs(a__dbl) = {1},
          uargs(a__first) = {1,2},
          uargs(a__sqr) = {1},
          uargs(a__terms) = {1},
          uargs(cons) = {1},
          uargs(recip) = {1}
        
        Following symbols are considered usable:
          {a__add,a__dbl,a__first,a__sqr,a__terms,mark}
        TcT has computed the following interpretation:
                 p(0) = [0]                        
                        [2]                        
            p(a__add) = [1 0] x_1 + [1 4] x_2 + [0]
                        [0 1]       [0 1]       [0]
            p(a__dbl) = [1 2] x_1 + [1]            
                        [0 1]       [0]            
          p(a__first) = [1 1] x_1 + [1 4] x_2 + [1]
                        [0 1]       [0 1]       [0]
            p(a__sqr) = [1 0] x_1 + [1]            
                        [0 1]       [0]            
          p(a__terms) = [1 4] x_1 + [3]            
                        [0 1]       [1]            
               p(add) = [1 0] x_1 + [1 4] x_2 + [0]
                        [0 1]       [0 1]       [0]
              p(cons) = [1 0] x_1 + [0]            
                        [0 1]       [1]            
               p(dbl) = [1 2] x_1 + [1]            
                        [0 1]       [0]            
             p(first) = [1 1] x_1 + [1 4] x_2 + [1]
                        [0 1]       [0 1]       [0]
              p(mark) = [1 4] x_1 + [0]            
                        [0 1]       [0]            
               p(nil) = [2]                        
                        [0]                        
             p(recip) = [1 0] x_1 + [2]            
                        [0 1]       [0]            
                 p(s) = [2]                        
                        [1]                        
               p(sqr) = [1 0] x_1 + [1]            
                        [0 1]       [0]            
             p(terms) = [1 4] x_1 + [0]            
                        [0 1]       [1]            
        
        Following rules are strictly oriented:
        mark(cons(X1,X2)) = [1 4] X1 + [4]   
                            [0 1]      [1]   
                          > [1 4] X1 + [0]   
                            [0 1]      [1]   
                          = cons(mark(X1),X2)
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(X1,X2) =  [1 0] X1 + [1 4] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 0] X1 + [1 4] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 =  add(X1,X2)                              
        
                   a__add(0(),X) =  [1 4] X + [0]                           
                                    [0 1]     [2]                           
                                 >= [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 =  mark(X)                                 
        
                  a__add(s(X),Y) =  [1 4] Y + [2]                           
                                    [0 1]     [1]                           
                                 >= [2]                                     
                                    [1]                                     
                                 =  s(add(X,Y))                             
        
                       a__dbl(X) =  [1 2] X + [1]                           
                                    [0 1]     [0]                           
                                 >= [1 2] X + [1]                           
                                    [0 1]     [0]                           
                                 =  dbl(X)                                  
        
                     a__dbl(0()) =  [5]                                     
                                    [2]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  0()                                     
        
                    a__dbl(s(X)) =  [5]                                     
                                    [1]                                     
                                 >= [2]                                     
                                    [1]                                     
                                 =  s(s(dbl(X)))                            
        
                 a__first(X1,X2) =  [1 1] X1 + [1 4] X2 + [1]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 1] X1 + [1 4] X2 + [1]               
                                    [0 1]      [0 1]      [0]               
                                 =  first(X1,X2)                            
        
                 a__first(0(),X) =  [1 4] X + [3]                           
                                    [0 1]     [2]                           
                                 >= [2]                                     
                                    [0]                                     
                                 =  nil()                                   
        
        a__first(s(X),cons(Y,Z)) =  [1 4] Y + [8]                           
                                    [0 1]     [2]                           
                                 >= [1 4] Y + [0]                           
                                    [0 1]     [1]                           
                                 =  cons(mark(Y),first(X,Z))                
        
                       a__sqr(X) =  [1 0] X + [1]                           
                                    [0 1]     [0]                           
                                 >= [1 0] X + [1]                           
                                    [0 1]     [0]                           
                                 =  sqr(X)                                  
        
                     a__sqr(0()) =  [1]                                     
                                    [2]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  0()                                     
        
                    a__sqr(s(X)) =  [3]                                     
                                    [1]                                     
                                 >= [2]                                     
                                    [1]                                     
                                 =  s(add(sqr(X),dbl(X)))                   
        
                     a__terms(N) =  [1 4] N + [3]                           
                                    [0 1]     [1]                           
                                 >= [1 4] N + [3]                           
                                    [0 1]     [1]                           
                                 =  cons(recip(a__sqr(mark(N))),terms(s(N)))
        
                     a__terms(X) =  [1 4] X + [3]                           
                                    [0 1]     [1]                           
                                 >= [1 4] X + [0]                           
                                    [0 1]     [1]                           
                                 =  terms(X)                                
        
                       mark(0()) =  [8]                                     
                                    [2]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  0()                                     
        
                mark(add(X1,X2)) =  [1 4] X1 + [1 8] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 4] X1 + [1 8] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 =  a__add(mark(X1),mark(X2))               
        
                    mark(dbl(X)) =  [1 6] X + [1]                           
                                    [0 1]     [0]                           
                                 >= [1 6] X + [1]                           
                                    [0 1]     [0]                           
                                 =  a__dbl(mark(X))                         
        
              mark(first(X1,X2)) =  [1 5] X1 + [1 8] X2 + [1]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 5] X1 + [1 8] X2 + [1]               
                                    [0 1]      [0 1]      [0]               
                                 =  a__first(mark(X1),mark(X2))             
        
                     mark(nil()) =  [2]                                     
                                    [0]                                     
                                 >= [2]                                     
                                    [0]                                     
                                 =  nil()                                   
        
                  mark(recip(X)) =  [1 4] X + [2]                           
                                    [0 1]     [0]                           
                                 >= [1 4] X + [2]                           
                                    [0 1]     [0]                           
                                 =  recip(mark(X))                          
        
                      mark(s(X)) =  [6]                                     
                                    [1]                                     
                                 >= [2]                                     
                                    [1]                                     
                                 =  s(X)                                    
        
                    mark(sqr(X)) =  [1 4] X + [1]                           
                                    [0 1]     [0]                           
                                 >= [1 4] X + [1]                           
                                    [0 1]     [0]                           
                                 =  a__sqr(mark(X))                         
        
                  mark(terms(X)) =  [1 8] X + [4]                           
                                    [0 1]     [1]                           
                                 >= [1 8] X + [3]                           
                                    [0 1]     [1]                           
                                 =  a__terms(mark(X))                       
        
** Step 1.b:12: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
            mark(recip(X)) -> recip(mark(X))
        - Weak TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__dbl(X) -> dbl(X)
            a__dbl(0()) -> 0()
            a__dbl(s(X)) -> s(s(dbl(X)))
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__sqr(X) -> sqr(X)
            a__sqr(0()) -> 0()
            a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
            a__terms(X) -> terms(X)
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(dbl(X)) -> a__dbl(mark(X))
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(nil()) -> nil()
            mark(s(X)) -> s(X)
            mark(sqr(X)) -> a__sqr(mark(X))
            mark(terms(X)) -> a__terms(mark(X))
        - Signature:
            {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1
            ,s/1,sqr/1,terms/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__dbl,a__first,a__sqr,a__terms
            ,mark} and constructors {0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(a__add) = {1,2},
          uargs(a__dbl) = {1},
          uargs(a__first) = {1,2},
          uargs(a__sqr) = {1},
          uargs(a__terms) = {1},
          uargs(cons) = {1},
          uargs(recip) = {1}
        
        Following symbols are considered usable:
          {a__add,a__dbl,a__first,a__sqr,a__terms,mark}
        TcT has computed the following interpretation:
                 p(0) = [2]                        
                        [0]                        
            p(a__add) = [1 2] x_1 + [1 2] x_2 + [0]
                        [0 1]       [0 1]       [0]
            p(a__dbl) = [1 1] x_1 + [6]            
                        [0 1]       [0]            
          p(a__first) = [1 0] x_1 + [1 5] x_2 + [4]
                        [0 1]       [0 1]       [1]
            p(a__sqr) = [1 0] x_1 + [1]            
                        [0 1]       [0]            
          p(a__terms) = [1 4] x_1 + [5]            
                        [0 1]       [2]            
               p(add) = [1 2] x_1 + [1 2] x_2 + [0]
                        [0 1]       [0 1]       [0]
              p(cons) = [1 0] x_1 + [0]            
                        [0 1]       [1]            
               p(dbl) = [1 1] x_1 + [6]            
                        [0 1]       [0]            
             p(first) = [1 0] x_1 + [1 5] x_2 + [3]
                        [0 1]       [0 1]       [1]
              p(mark) = [1 2] x_1 + [0]            
                        [0 1]       [0]            
               p(nil) = [0]                        
                        [0]                        
             p(recip) = [1 0] x_1 + [4]            
                        [0 1]       [1]            
                 p(s) = [4]                        
                        [2]                        
               p(sqr) = [1 0] x_1 + [1]            
                        [0 1]       [0]            
             p(terms) = [1 4] x_1 + [2]            
                        [0 1]       [2]            
        
        Following rules are strictly oriented:
        mark(recip(X)) = [1 2] X + [6] 
                         [0 1]     [1] 
                       > [1 2] X + [4] 
                         [0 1]     [1] 
                       = recip(mark(X))
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(X1,X2) =  [1 2] X1 + [1 2] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 2] X1 + [1 2] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 =  add(X1,X2)                              
        
                   a__add(0(),X) =  [1 2] X + [2]                           
                                    [0 1]     [0]                           
                                 >= [1 2] X + [0]                           
                                    [0 1]     [0]                           
                                 =  mark(X)                                 
        
                  a__add(s(X),Y) =  [1 2] Y + [8]                           
                                    [0 1]     [2]                           
                                 >= [4]                                     
                                    [2]                                     
                                 =  s(add(X,Y))                             
        
                       a__dbl(X) =  [1 1] X + [6]                           
                                    [0 1]     [0]                           
                                 >= [1 1] X + [6]                           
                                    [0 1]     [0]                           
                                 =  dbl(X)                                  
        
                     a__dbl(0()) =  [8]                                     
                                    [0]                                     
                                 >= [2]                                     
                                    [0]                                     
                                 =  0()                                     
        
                    a__dbl(s(X)) =  [12]                                    
                                    [2]                                     
                                 >= [4]                                     
                                    [2]                                     
                                 =  s(s(dbl(X)))                            
        
                 a__first(X1,X2) =  [1 0] X1 + [1 5] X2 + [4]               
                                    [0 1]      [0 1]      [1]               
                                 >= [1 0] X1 + [1 5] X2 + [3]               
                                    [0 1]      [0 1]      [1]               
                                 =  first(X1,X2)                            
        
                 a__first(0(),X) =  [1 5] X + [6]                           
                                    [0 1]     [1]                           
                                 >= [0]                                     
                                    [0]                                     
                                 =  nil()                                   
        
        a__first(s(X),cons(Y,Z)) =  [1 5] Y + [13]                          
                                    [0 1]     [4]                           
                                 >= [1 2] Y + [0]                           
                                    [0 1]     [1]                           
                                 =  cons(mark(Y),first(X,Z))                
        
                       a__sqr(X) =  [1 0] X + [1]                           
                                    [0 1]     [0]                           
                                 >= [1 0] X + [1]                           
                                    [0 1]     [0]                           
                                 =  sqr(X)                                  
        
                     a__sqr(0()) =  [3]                                     
                                    [0]                                     
                                 >= [2]                                     
                                    [0]                                     
                                 =  0()                                     
        
                    a__sqr(s(X)) =  [5]                                     
                                    [2]                                     
                                 >= [4]                                     
                                    [2]                                     
                                 =  s(add(sqr(X),dbl(X)))                   
        
                     a__terms(N) =  [1 4] N + [5]                           
                                    [0 1]     [2]                           
                                 >= [1 2] N + [5]                           
                                    [0 1]     [2]                           
                                 =  cons(recip(a__sqr(mark(N))),terms(s(N)))
        
                     a__terms(X) =  [1 4] X + [5]                           
                                    [0 1]     [2]                           
                                 >= [1 4] X + [2]                           
                                    [0 1]     [2]                           
                                 =  terms(X)                                
        
                       mark(0()) =  [2]                                     
                                    [0]                                     
                                 >= [2]                                     
                                    [0]                                     
                                 =  0()                                     
        
                mark(add(X1,X2)) =  [1 4] X1 + [1 4] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 4] X1 + [1 4] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 =  a__add(mark(X1),mark(X2))               
        
               mark(cons(X1,X2)) =  [1 2] X1 + [2]                          
                                    [0 1]      [1]                          
                                 >= [1 2] X1 + [0]                          
                                    [0 1]      [1]                          
                                 =  cons(mark(X1),X2)                       
        
                    mark(dbl(X)) =  [1 3] X + [6]                           
                                    [0 1]     [0]                           
                                 >= [1 3] X + [6]                           
                                    [0 1]     [0]                           
                                 =  a__dbl(mark(X))                         
        
              mark(first(X1,X2)) =  [1 2] X1 + [1 7] X2 + [5]               
                                    [0 1]      [0 1]      [1]               
                                 >= [1 2] X1 + [1 7] X2 + [4]               
                                    [0 1]      [0 1]      [1]               
                                 =  a__first(mark(X1),mark(X2))             
        
                     mark(nil()) =  [0]                                     
                                    [0]                                     
                                 >= [0]                                     
                                    [0]                                     
                                 =  nil()                                   
        
                      mark(s(X)) =  [8]                                     
                                    [2]                                     
                                 >= [4]                                     
                                    [2]                                     
                                 =  s(X)                                    
        
                    mark(sqr(X)) =  [1 2] X + [1]                           
                                    [0 1]     [0]                           
                                 >= [1 2] X + [1]                           
                                    [0 1]     [0]                           
                                 =  a__sqr(mark(X))                         
        
                  mark(terms(X)) =  [1 6] X + [6]                           
                                    [0 1]     [2]                           
                                 >= [1 6] X + [5]                           
                                    [0 1]     [2]                           
                                 =  a__terms(mark(X))                       
        
** Step 1.b:13: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
        - Weak TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__dbl(X) -> dbl(X)
            a__dbl(0()) -> 0()
            a__dbl(s(X)) -> s(s(dbl(X)))
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__sqr(X) -> sqr(X)
            a__sqr(0()) -> 0()
            a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
            a__terms(X) -> terms(X)
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(dbl(X)) -> a__dbl(mark(X))
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(nil()) -> nil()
            mark(recip(X)) -> recip(mark(X))
            mark(s(X)) -> s(X)
            mark(sqr(X)) -> a__sqr(mark(X))
            mark(terms(X)) -> a__terms(mark(X))
        - Signature:
            {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1
            ,s/1,sqr/1,terms/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__dbl,a__first,a__sqr,a__terms
            ,mark} and constructors {0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(a__add) = {1,2},
          uargs(a__dbl) = {1},
          uargs(a__first) = {1,2},
          uargs(a__sqr) = {1},
          uargs(a__terms) = {1},
          uargs(cons) = {1},
          uargs(recip) = {1}
        
        Following symbols are considered usable:
          {a__add,a__dbl,a__first,a__sqr,a__terms,mark}
        TcT has computed the following interpretation:
                 p(0) = [0]                        
                        [0]                        
            p(a__add) = [1 0] x_1 + [1 1] x_2 + [1]
                        [0 1]       [0 1]       [1]
            p(a__dbl) = [1 0] x_1 + [0]            
                        [0 1]       [2]            
          p(a__first) = [1 2] x_1 + [1 4] x_2 + [0]
                        [0 1]       [0 1]       [0]
            p(a__sqr) = [1 0] x_1 + [1]            
                        [0 1]       [6]            
          p(a__terms) = [1 1] x_1 + [1]            
                        [0 1]       [6]            
               p(add) = [1 0] x_1 + [1 1] x_2 + [1]
                        [0 1]       [0 1]       [1]
              p(cons) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
               p(dbl) = [1 0] x_1 + [0]            
                        [0 1]       [2]            
             p(first) = [1 2] x_1 + [1 4] x_2 + [0]
                        [0 1]       [0 1]       [0]
              p(mark) = [1 1] x_1 + [0]            
                        [0 1]       [0]            
               p(nil) = [0]                        
                        [0]                        
             p(recip) = [1 0] x_1 + [0]            
                        [0 1]       [0]            
                 p(s) = [0]                        
                        [2]                        
               p(sqr) = [1 0] x_1 + [0]            
                        [0 1]       [6]            
             p(terms) = [1 1] x_1 + [1]            
                        [0 1]       [6]            
        
        Following rules are strictly oriented:
        mark(add(X1,X2)) = [1 1] X1 + [1 2] X2 + [2]
                           [0 1]      [0 1]      [1]
                         > [1 1] X1 + [1 2] X2 + [1]
                           [0 1]      [0 1]      [1]
                         = a__add(mark(X1),mark(X2))
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(X1,X2) =  [1 0] X1 + [1 1] X2 + [1]               
                                    [0 1]      [0 1]      [1]               
                                 >= [1 0] X1 + [1 1] X2 + [1]               
                                    [0 1]      [0 1]      [1]               
                                 =  add(X1,X2)                              
        
                   a__add(0(),X) =  [1 1] X + [1]                           
                                    [0 1]     [1]                           
                                 >= [1 1] X + [0]                           
                                    [0 1]     [0]                           
                                 =  mark(X)                                 
        
                  a__add(s(X),Y) =  [1 1] Y + [1]                           
                                    [0 1]     [3]                           
                                 >= [0]                                     
                                    [2]                                     
                                 =  s(add(X,Y))                             
        
                       a__dbl(X) =  [1 0] X + [0]                           
                                    [0 1]     [2]                           
                                 >= [1 0] X + [0]                           
                                    [0 1]     [2]                           
                                 =  dbl(X)                                  
        
                     a__dbl(0()) =  [0]                                     
                                    [2]                                     
                                 >= [0]                                     
                                    [0]                                     
                                 =  0()                                     
        
                    a__dbl(s(X)) =  [0]                                     
                                    [4]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  s(s(dbl(X)))                            
        
                 a__first(X1,X2) =  [1 2] X1 + [1 4] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 2] X1 + [1 4] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 =  first(X1,X2)                            
        
                 a__first(0(),X) =  [1 4] X + [0]                           
                                    [0 1]     [0]                           
                                 >= [0]                                     
                                    [0]                                     
                                 =  nil()                                   
        
        a__first(s(X),cons(Y,Z)) =  [1 4] Y + [4]                           
                                    [0 1]     [2]                           
                                 >= [1 1] Y + [0]                           
                                    [0 1]     [0]                           
                                 =  cons(mark(Y),first(X,Z))                
        
                       a__sqr(X) =  [1 0] X + [1]                           
                                    [0 1]     [6]                           
                                 >= [1 0] X + [0]                           
                                    [0 1]     [6]                           
                                 =  sqr(X)                                  
        
                     a__sqr(0()) =  [1]                                     
                                    [6]                                     
                                 >= [0]                                     
                                    [0]                                     
                                 =  0()                                     
        
                    a__sqr(s(X)) =  [1]                                     
                                    [8]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  s(add(sqr(X),dbl(X)))                   
        
                     a__terms(N) =  [1 1] N + [1]                           
                                    [0 1]     [6]                           
                                 >= [1 1] N + [1]                           
                                    [0 1]     [6]                           
                                 =  cons(recip(a__sqr(mark(N))),terms(s(N)))
        
                     a__terms(X) =  [1 1] X + [1]                           
                                    [0 1]     [6]                           
                                 >= [1 1] X + [1]                           
                                    [0 1]     [6]                           
                                 =  terms(X)                                
        
                       mark(0()) =  [0]                                     
                                    [0]                                     
                                 >= [0]                                     
                                    [0]                                     
                                 =  0()                                     
        
               mark(cons(X1,X2)) =  [1 1] X1 + [0]                          
                                    [0 1]      [0]                          
                                 >= [1 1] X1 + [0]                          
                                    [0 1]      [0]                          
                                 =  cons(mark(X1),X2)                       
        
                    mark(dbl(X)) =  [1 1] X + [2]                           
                                    [0 1]     [2]                           
                                 >= [1 1] X + [0]                           
                                    [0 1]     [2]                           
                                 =  a__dbl(mark(X))                         
        
              mark(first(X1,X2)) =  [1 3] X1 + [1 5] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 >= [1 3] X1 + [1 5] X2 + [0]               
                                    [0 1]      [0 1]      [0]               
                                 =  a__first(mark(X1),mark(X2))             
        
                     mark(nil()) =  [0]                                     
                                    [0]                                     
                                 >= [0]                                     
                                    [0]                                     
                                 =  nil()                                   
        
                  mark(recip(X)) =  [1 1] X + [0]                           
                                    [0 1]     [0]                           
                                 >= [1 1] X + [0]                           
                                    [0 1]     [0]                           
                                 =  recip(mark(X))                          
        
                      mark(s(X)) =  [2]                                     
                                    [2]                                     
                                 >= [0]                                     
                                    [2]                                     
                                 =  s(X)                                    
        
                    mark(sqr(X)) =  [1 1] X + [6]                           
                                    [0 1]     [6]                           
                                 >= [1 1] X + [1]                           
                                    [0 1]     [6]                           
                                 =  a__sqr(mark(X))                         
        
                  mark(terms(X)) =  [1 2] X + [7]                           
                                    [0 1]     [6]                           
                                 >= [1 2] X + [1]                           
                                    [0 1]     [6]                           
                                 =  a__terms(mark(X))                       
        
** Step 1.b:14: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__dbl(X) -> dbl(X)
            a__dbl(0()) -> 0()
            a__dbl(s(X)) -> s(s(dbl(X)))
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
            a__sqr(X) -> sqr(X)
            a__sqr(0()) -> 0()
            a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
            a__terms(X) -> terms(X)
            mark(0()) -> 0()
            mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(dbl(X)) -> a__dbl(mark(X))
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(nil()) -> nil()
            mark(recip(X)) -> recip(mark(X))
            mark(s(X)) -> s(X)
            mark(sqr(X)) -> a__sqr(mark(X))
            mark(terms(X)) -> a__terms(mark(X))
        - Signature:
            {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1
            ,s/1,sqr/1,terms/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__dbl,a__first,a__sqr,a__terms
            ,mark} and constructors {0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))