* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__g(X)) -> g(activate(X))
            b() -> c()
            f(X,n__g(X),Y) -> f(activate(Y),activate(Y),activate(Y))
            g(X) -> n__g(X)
            g(b()) -> c()
        - Signature:
            {activate/1,b/0,f/3,g/1} / {c/0,n__g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,b,f,g} and constructors {c,n__g}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__g(X)) -> g(activate(X))
            b() -> c()
            f(X,n__g(X),Y) -> f(activate(Y),activate(Y),activate(Y))
            g(X) -> n__g(X)
            g(b()) -> c()
        - Signature:
            {activate/1,b/0,f/3,g/1} / {c/0,n__g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,b,f,g} and constructors {c,n__g}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__g(x)} =
            activate(n__g(x)) ->^+ g(activate(x))
              = C[activate(x) = activate(x){}]

WORST_CASE(Omega(n^1),?)