* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
activate(X) -> X
activate(n__g(X)) -> g(activate(X))
b() -> c()
f(X,n__g(X),Y) -> f(activate(Y),activate(Y),activate(Y))
g(X) -> n__g(X)
g(b()) -> c()
- Signature:
{activate/1,b/0,f/3,g/1} / {c/0,n__g/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,b,f,g} and constructors {c,n__g}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
activate(X) -> X
activate(n__g(X)) -> g(activate(X))
b() -> c()
f(X,n__g(X),Y) -> f(activate(Y),activate(Y),activate(Y))
g(X) -> n__g(X)
g(b()) -> c()
- Signature:
{activate/1,b/0,f/3,g/1} / {c/0,n__g/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,b,f,g} and constructors {c,n__g}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
activate(x){x -> n__g(x)} =
activate(n__g(x)) ->^+ g(activate(x))
= C[activate(x) = activate(x){}]
WORST_CASE(Omega(n^1),?)