* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__g(X)) -> g(activate(X)) b() -> c() f(X,n__g(X),Y) -> f(activate(Y),activate(Y),activate(Y)) g(X) -> n__g(X) g(b()) -> c() - Signature: {activate/1,b/0,f/3,g/1} / {c/0,n__g/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,b,f,g} and constructors {c,n__g} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__g(X)) -> g(activate(X)) b() -> c() f(X,n__g(X),Y) -> f(activate(Y),activate(Y),activate(Y)) g(X) -> n__g(X) g(b()) -> c() - Signature: {activate/1,b/0,f/3,g/1} / {c/0,n__g/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,b,f,g} and constructors {c,n__g} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: activate(x){x -> n__g(x)} = activate(n__g(x)) ->^+ g(activate(x)) = C[activate(x) = activate(x){}] WORST_CASE(Omega(n^1),?)