* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: active(b()) -> mark(c()) active(f(X,g(X),Y)) -> mark(f(Y,Y,Y)) active(g(X)) -> g(active(X)) active(g(b())) -> mark(c()) f(ok(X1),ok(X2),ok(X3)) -> ok(f(X1,X2,X3)) g(mark(X)) -> mark(g(X)) g(ok(X)) -> ok(g(X)) proper(b()) -> ok(b()) proper(c()) -> ok(c()) proper(f(X1,X2,X3)) -> f(proper(X1),proper(X2),proper(X3)) proper(g(X)) -> g(proper(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {active/1,f/3,g/1,proper/1,top/1} / {b/0,c/0,mark/1,ok/1} - Obligation: innermost runtime complexity wrt. defined symbols {active,f,g,proper,top} and constructors {b,c,mark,ok} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: active(b()) -> mark(c()) active(f(X,g(X),Y)) -> mark(f(Y,Y,Y)) active(g(X)) -> g(active(X)) active(g(b())) -> mark(c()) f(ok(X1),ok(X2),ok(X3)) -> ok(f(X1,X2,X3)) g(mark(X)) -> mark(g(X)) g(ok(X)) -> ok(g(X)) proper(b()) -> ok(b()) proper(c()) -> ok(c()) proper(f(X1,X2,X3)) -> f(proper(X1),proper(X2),proper(X3)) proper(g(X)) -> g(proper(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {active/1,f/3,g/1,proper/1,top/1} / {b/0,c/0,mark/1,ok/1} - Obligation: innermost runtime complexity wrt. defined symbols {active,f,g,proper,top} and constructors {b,c,mark,ok} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: f(x,y,z){x -> ok(x),y -> ok(y),z -> ok(z)} = f(ok(x),ok(y),ok(z)) ->^+ ok(f(x,y,z)) = C[f(x,y,z) = f(x,y,z){}] WORST_CASE(Omega(n^1),?)