* Step 1: Sum WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__f(X)) -> f(X)
            f(X) -> n__f(X)
            f(f(a())) -> c(n__f(g(f(a()))))
        - Signature:
            {activate/1,f/1} / {a/0,c/1,g/1,n__f/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,f} and constructors {a,c,g,n__f}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: InnermostRuleRemoval WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__f(X)) -> f(X)
            f(X) -> n__f(X)
            f(f(a())) -> c(n__f(g(f(a()))))
        - Signature:
            {activate/1,f/1} / {a/0,c/1,g/1,n__f/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,f} and constructors {a,c,g,n__f}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          f(f(a())) -> c(n__f(g(f(a()))))
        All above mentioned rules can be savely removed.
* Step 3: DependencyPairs WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__f(X)) -> f(X)
            f(X) -> n__f(X)
        - Signature:
            {activate/1,f/1} / {a/0,c/1,g/1,n__f/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,f} and constructors {a,c,g,n__f}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          activate#(X) -> c_1()
          activate#(n__f(X)) -> c_2(f#(X))
          f#(X) -> c_3()
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 4: UsableRules WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_1()
            activate#(n__f(X)) -> c_2(f#(X))
            f#(X) -> c_3()
        - Weak TRS:
            activate(X) -> X
            activate(n__f(X)) -> f(X)
            f(X) -> n__f(X)
        - Signature:
            {activate/1,f/1,activate#/1,f#/1} / {a/0,c/1,g/1,n__f/1,c_1/0,c_2/1,c_3/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,f#} and constructors {a,c,g,n__f}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          activate#(X) -> c_1()
          activate#(n__f(X)) -> c_2(f#(X))
          f#(X) -> c_3()
* Step 5: Trivial WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_1()
            activate#(n__f(X)) -> c_2(f#(X))
            f#(X) -> c_3()
        - Signature:
            {activate/1,f/1,activate#/1,f#/1} / {a/0,c/1,g/1,n__f/1,c_1/0,c_2/1,c_3/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,f#} and constructors {a,c,g,n__f}
    + Applied Processor:
        Trivial
    + Details:
        Consider the dependency graph
          1:S:activate#(X) -> c_1()
             
          
          2:S:activate#(n__f(X)) -> c_2(f#(X))
             -->_1 f#(X) -> c_3():3
          
          3:S:f#(X) -> c_3()
             
          
        The dependency graph contains no loops, we remove all dependency pairs.
* Step 6: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {activate/1,f/1,activate#/1,f#/1} / {a/0,c/1,g/1,n__f/1,c_1/0,c_2/1,c_3/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,f#} and constructors {a,c,g,n__f}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(1))