* Step 1: Sum WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict TRS:
            a__c() -> c()
            a__c() -> d()
            a__g(X) -> a__h(X)
            a__g(X) -> g(X)
            a__h(X) -> h(X)
            a__h(d()) -> a__g(c())
            mark(c()) -> a__c()
            mark(d()) -> d()
            mark(g(X)) -> a__g(X)
            mark(h(X)) -> a__h(X)
        - Signature:
            {a__c/0,a__g/1,a__h/1,mark/1} / {c/0,d/0,g/1,h/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__c,a__g,a__h,mark} and constructors {c,d,g,h}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DependencyPairs WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict TRS:
            a__c() -> c()
            a__c() -> d()
            a__g(X) -> a__h(X)
            a__g(X) -> g(X)
            a__h(X) -> h(X)
            a__h(d()) -> a__g(c())
            mark(c()) -> a__c()
            mark(d()) -> d()
            mark(g(X)) -> a__g(X)
            mark(h(X)) -> a__h(X)
        - Signature:
            {a__c/0,a__g/1,a__h/1,mark/1} / {c/0,d/0,g/1,h/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__c,a__g,a__h,mark} and constructors {c,d,g,h}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          a__c#() -> c_1()
          a__c#() -> c_2()
          a__g#(X) -> c_3(a__h#(X))
          a__g#(X) -> c_4()
          a__h#(X) -> c_5()
          a__h#(d()) -> c_6(a__g#(c()))
          mark#(c()) -> c_7(a__c#())
          mark#(d()) -> c_8()
          mark#(g(X)) -> c_9(a__g#(X))
          mark#(h(X)) -> c_10(a__h#(X))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 3: UsableRules WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            a__c#() -> c_1()
            a__c#() -> c_2()
            a__g#(X) -> c_3(a__h#(X))
            a__g#(X) -> c_4()
            a__h#(X) -> c_5()
            a__h#(d()) -> c_6(a__g#(c()))
            mark#(c()) -> c_7(a__c#())
            mark#(d()) -> c_8()
            mark#(g(X)) -> c_9(a__g#(X))
            mark#(h(X)) -> c_10(a__h#(X))
        - Weak TRS:
            a__c() -> c()
            a__c() -> d()
            a__g(X) -> a__h(X)
            a__g(X) -> g(X)
            a__h(X) -> h(X)
            a__h(d()) -> a__g(c())
            mark(c()) -> a__c()
            mark(d()) -> d()
            mark(g(X)) -> a__g(X)
            mark(h(X)) -> a__h(X)
        - Signature:
            {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__c#,a__g#,a__h#,mark#} and constructors {c,d,g,h}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          a__c#() -> c_1()
          a__c#() -> c_2()
          a__g#(X) -> c_3(a__h#(X))
          a__g#(X) -> c_4()
          a__h#(X) -> c_5()
          a__h#(d()) -> c_6(a__g#(c()))
          mark#(c()) -> c_7(a__c#())
          mark#(d()) -> c_8()
          mark#(g(X)) -> c_9(a__g#(X))
          mark#(h(X)) -> c_10(a__h#(X))
* Step 4: PredecessorEstimation WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            a__c#() -> c_1()
            a__c#() -> c_2()
            a__g#(X) -> c_3(a__h#(X))
            a__g#(X) -> c_4()
            a__h#(X) -> c_5()
            a__h#(d()) -> c_6(a__g#(c()))
            mark#(c()) -> c_7(a__c#())
            mark#(d()) -> c_8()
            mark#(g(X)) -> c_9(a__g#(X))
            mark#(h(X)) -> c_10(a__h#(X))
        - Signature:
            {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__c#,a__g#,a__h#,mark#} and constructors {c,d,g,h}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,2,4,5,8}
        by application of
          Pre({1,2,4,5,8}) = {3,6,7,9,10}.
        Here rules are labelled as follows:
          1: a__c#() -> c_1()
          2: a__c#() -> c_2()
          3: a__g#(X) -> c_3(a__h#(X))
          4: a__g#(X) -> c_4()
          5: a__h#(X) -> c_5()
          6: a__h#(d()) -> c_6(a__g#(c()))
          7: mark#(c()) -> c_7(a__c#())
          8: mark#(d()) -> c_8()
          9: mark#(g(X)) -> c_9(a__g#(X))
          10: mark#(h(X)) -> c_10(a__h#(X))
* Step 5: PredecessorEstimation WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            a__g#(X) -> c_3(a__h#(X))
            a__h#(d()) -> c_6(a__g#(c()))
            mark#(c()) -> c_7(a__c#())
            mark#(g(X)) -> c_9(a__g#(X))
            mark#(h(X)) -> c_10(a__h#(X))
        - Weak DPs:
            a__c#() -> c_1()
            a__c#() -> c_2()
            a__g#(X) -> c_4()
            a__h#(X) -> c_5()
            mark#(d()) -> c_8()
        - Signature:
            {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__c#,a__g#,a__h#,mark#} and constructors {c,d,g,h}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {3}
        by application of
          Pre({3}) = {}.
        Here rules are labelled as follows:
          1: a__g#(X) -> c_3(a__h#(X))
          2: a__h#(d()) -> c_6(a__g#(c()))
          3: mark#(c()) -> c_7(a__c#())
          4: mark#(g(X)) -> c_9(a__g#(X))
          5: mark#(h(X)) -> c_10(a__h#(X))
          6: a__c#() -> c_1()
          7: a__c#() -> c_2()
          8: a__g#(X) -> c_4()
          9: a__h#(X) -> c_5()
          10: mark#(d()) -> c_8()
* Step 6: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            a__g#(X) -> c_3(a__h#(X))
            a__h#(d()) -> c_6(a__g#(c()))
            mark#(g(X)) -> c_9(a__g#(X))
            mark#(h(X)) -> c_10(a__h#(X))
        - Weak DPs:
            a__c#() -> c_1()
            a__c#() -> c_2()
            a__g#(X) -> c_4()
            a__h#(X) -> c_5()
            mark#(c()) -> c_7(a__c#())
            mark#(d()) -> c_8()
        - Signature:
            {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__c#,a__g#,a__h#,mark#} and constructors {c,d,g,h}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:a__g#(X) -> c_3(a__h#(X))
             -->_1 a__h#(d()) -> c_6(a__g#(c())):2
             -->_1 a__h#(X) -> c_5():8
          
          2:S:a__h#(d()) -> c_6(a__g#(c()))
             -->_1 a__g#(X) -> c_4():7
             -->_1 a__g#(X) -> c_3(a__h#(X)):1
          
          3:S:mark#(g(X)) -> c_9(a__g#(X))
             -->_1 a__g#(X) -> c_4():7
             -->_1 a__g#(X) -> c_3(a__h#(X)):1
          
          4:S:mark#(h(X)) -> c_10(a__h#(X))
             -->_1 a__h#(X) -> c_5():8
             -->_1 a__h#(d()) -> c_6(a__g#(c())):2
          
          5:W:a__c#() -> c_1()
             
          
          6:W:a__c#() -> c_2()
             
          
          7:W:a__g#(X) -> c_4()
             
          
          8:W:a__h#(X) -> c_5()
             
          
          9:W:mark#(c()) -> c_7(a__c#())
             -->_1 a__c#() -> c_2():6
             -->_1 a__c#() -> c_1():5
          
          10:W:mark#(d()) -> c_8()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          10: mark#(d()) -> c_8()
          9: mark#(c()) -> c_7(a__c#())
          6: a__c#() -> c_2()
          5: a__c#() -> c_1()
          8: a__h#(X) -> c_5()
          7: a__g#(X) -> c_4()
* Step 7: RemoveHeads WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            a__g#(X) -> c_3(a__h#(X))
            a__h#(d()) -> c_6(a__g#(c()))
            mark#(g(X)) -> c_9(a__g#(X))
            mark#(h(X)) -> c_10(a__h#(X))
        - Signature:
            {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__c#,a__g#,a__h#,mark#} and constructors {c,d,g,h}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:a__g#(X) -> c_3(a__h#(X))
           -->_1 a__h#(d()) -> c_6(a__g#(c())):2
        
        2:S:a__h#(d()) -> c_6(a__g#(c()))
           -->_1 a__g#(X) -> c_3(a__h#(X)):1
        
        3:S:mark#(g(X)) -> c_9(a__g#(X))
           -->_1 a__g#(X) -> c_3(a__h#(X)):1
        
        4:S:mark#(h(X)) -> c_10(a__h#(X))
           -->_1 a__h#(d()) -> c_6(a__g#(c())):2
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(3,mark#(g(X)) -> c_9(a__g#(X))),(4,mark#(h(X)) -> c_10(a__h#(X)))]
* Step 8: WeightGap WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            a__g#(X) -> c_3(a__h#(X))
            a__h#(d()) -> c_6(a__g#(c()))
        - Signature:
            {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__c#,a__g#,a__h#,mark#} and constructors {c,d,g,h}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima):
          The following argument positions are considered usable:
            uargs(c_3) = {1},
            uargs(c_6) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
             p(a__c) = [0]         
             p(a__g) = [0]         
             p(a__h) = [0]         
                p(c) = [0]         
                p(d) = [0]         
                p(g) = [0]         
                p(h) = [0]         
             p(mark) = [0]         
            p(a__c#) = [0]         
            p(a__g#) = [0]         
            p(a__h#) = [11]        
            p(mark#) = [0]         
              p(c_1) = [0]         
              p(c_2) = [0]         
              p(c_3) = [1] x1 + [0]
              p(c_4) = [0]         
              p(c_5) = [0]         
              p(c_6) = [1] x1 + [0]
              p(c_7) = [0]         
              p(c_8) = [0]         
              p(c_9) = [0]         
             p(c_10) = [0]         
          
          Following rules are strictly oriented:
          a__h#(d()) = [11]           
                     > [0]            
                     = c_6(a__g#(c()))
          
          
          Following rules are (at-least) weakly oriented:
          a__g#(X) =  [0]          
                   >= [11]         
                   =  c_3(a__h#(X))
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 9: WeightGap WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            a__g#(X) -> c_3(a__h#(X))
        - Weak DPs:
            a__h#(d()) -> c_6(a__g#(c()))
        - Signature:
            {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__c#,a__g#,a__h#,mark#} and constructors {c,d,g,h}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima):
          The following argument positions are considered usable:
            uargs(c_3) = {1},
            uargs(c_6) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
             p(a__c) = [0]         
             p(a__g) = [0]         
             p(a__h) = [2] x1 + [0]
                p(c) = [0]         
                p(d) = [7]         
                p(g) = [0]         
                p(h) = [0]         
             p(mark) = [2] x1 + [1]
            p(a__c#) = [1]         
            p(a__g#) = [8] x1 + [8]
            p(a__h#) = [3] x1 + [2]
            p(mark#) = [0]         
              p(c_1) = [0]         
              p(c_2) = [0]         
              p(c_3) = [1] x1 + [2]
              p(c_4) = [8]         
              p(c_5) = [0]         
              p(c_6) = [1] x1 + [0]
              p(c_7) = [2] x1 + [4]
              p(c_8) = [0]         
              p(c_9) = [8] x1 + [1]
             p(c_10) = [1]         
          
          Following rules are strictly oriented:
          a__g#(X) = [8] X + [8]  
                   > [3] X + [4]  
                   = c_3(a__h#(X))
          
          
          Following rules are (at-least) weakly oriented:
          a__h#(d()) =  [23]           
                     >= [8]            
                     =  c_6(a__g#(c()))
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 10: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            a__g#(X) -> c_3(a__h#(X))
            a__h#(d()) -> c_6(a__g#(c()))
        - Signature:
            {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__c#,a__g#,a__h#,mark#} and constructors {c,d,g,h}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(1))