* Step 1: Sum WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            first(X1,X2) -> n__first(X1,X2)
            first(0(),Z) -> nil()
            first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            sel(0(),cons(X,Z)) -> X
            sel(s(X),cons(Y,Z)) -> sel(X,activate(Z))
        - Signature:
            {activate/1,first/2,from/1,sel/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,first,from,sel} and constructors {0,cons
            ,n__first,n__from,nil,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DependencyPairs WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            first(X1,X2) -> n__first(X1,X2)
            first(0(),Z) -> nil()
            first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            sel(0(),cons(X,Z)) -> X
            sel(s(X),cons(Y,Z)) -> sel(X,activate(Z))
        - Signature:
            {activate/1,first/2,from/1,sel/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,first,from,sel} and constructors {0,cons
            ,n__first,n__from,nil,s}
    + Applied Processor:
        DependencyPairs {dpKind_ = WIDP}
    + Details:
        We add the following weak innermost dependency pairs:
        
        Strict DPs
          activate#(X) -> c_1()
          activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          activate#(n__from(X)) -> c_3(from#(X))
          first#(X1,X2) -> c_4()
          first#(0(),Z) -> c_5()
          first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
          from#(X) -> c_7()
          from#(X) -> c_8()
          sel#(0(),cons(X,Z)) -> c_9()
          sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 3: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_1()
            activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
            activate#(n__from(X)) -> c_3(from#(X))
            first#(X1,X2) -> c_4()
            first#(0(),Z) -> c_5()
            first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
            from#(X) -> c_7()
            from#(X) -> c_8()
            sel#(0(),cons(X,Z)) -> c_9()
            sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
        - Strict TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            first(X1,X2) -> n__first(X1,X2)
            first(0(),Z) -> nil()
            first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            sel(0(),cons(X,Z)) -> X
            sel(s(X),cons(Y,Z)) -> sel(X,activate(Z))
        - Signature:
            {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1
            ,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,first#,from#,sel#} and constructors {0,cons
            ,n__first,n__from,nil,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          activate(X) -> X
          activate(n__first(X1,X2)) -> first(X1,X2)
          activate(n__from(X)) -> from(X)
          first(X1,X2) -> n__first(X1,X2)
          first(0(),Z) -> nil()
          first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
          activate#(X) -> c_1()
          activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          activate#(n__from(X)) -> c_3(from#(X))
          first#(X1,X2) -> c_4()
          first#(0(),Z) -> c_5()
          first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
          from#(X) -> c_7()
          from#(X) -> c_8()
          sel#(0(),cons(X,Z)) -> c_9()
          sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
* Step 4: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_1()
            activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
            activate#(n__from(X)) -> c_3(from#(X))
            first#(X1,X2) -> c_4()
            first#(0(),Z) -> c_5()
            first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
            from#(X) -> c_7()
            from#(X) -> c_8()
            sel#(0(),cons(X,Z)) -> c_9()
            sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
        - Strict TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            first(X1,X2) -> n__first(X1,X2)
            first(0(),Z) -> nil()
            first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
        - Signature:
            {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1
            ,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,first#,from#,sel#} and constructors {0,cons
            ,n__first,n__from,nil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(cons) = {2},
            uargs(n__first) = {2},
            uargs(sel#) = {2},
            uargs(c_2) = {1},
            uargs(c_3) = {1},
            uargs(c_6) = {1},
            uargs(c_10) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(0) = [0]                  
             p(activate) = [1] x1 + [2]         
                 p(cons) = [1] x2 + [0]         
                p(first) = [1] x1 + [1] x2 + [8]
                 p(from) = [9]                  
             p(n__first) = [1] x1 + [1] x2 + [7]
              p(n__from) = [8]                  
                  p(nil) = [0]                  
                    p(s) = [1] x1 + [2]         
                  p(sel) = [0]                  
            p(activate#) = [0]                  
               p(first#) = [0]                  
                p(from#) = [0]                  
                 p(sel#) = [9] x1 + [1] x2 + [9]
                  p(c_1) = [2]                  
                  p(c_2) = [1] x1 + [0]         
                  p(c_3) = [1] x1 + [0]         
                  p(c_4) = [0]                  
                  p(c_5) = [1]                  
                  p(c_6) = [1] x1 + [4]         
                  p(c_7) = [0]                  
                  p(c_8) = [1]                  
                  p(c_9) = [0]                  
                 p(c_10) = [1] x1 + [9]         
          
          Following rules are strictly oriented:
                sel#(0(),cons(X,Z)) = [1] Z + [9]                    
                                    > [0]                            
                                    = c_9()                          
          
               sel#(s(X),cons(Y,Z)) = [9] X + [1] Z + [27]           
                                    > [9] X + [1] Z + [20]           
                                    = c_10(sel#(X,activate(Z)))      
          
                        activate(X) = [1] X + [2]                    
                                    > [1] X + [0]                    
                                    = X                              
          
          activate(n__first(X1,X2)) = [1] X1 + [1] X2 + [9]          
                                    > [1] X1 + [1] X2 + [8]          
                                    = first(X1,X2)                   
          
               activate(n__from(X)) = [10]                           
                                    > [9]                            
                                    = from(X)                        
          
                       first(X1,X2) = [1] X1 + [1] X2 + [8]          
                                    > [1] X1 + [1] X2 + [7]          
                                    = n__first(X1,X2)                
          
                       first(0(),Z) = [1] Z + [8]                    
                                    > [0]                            
                                    = nil()                          
          
              first(s(X),cons(Y,Z)) = [1] X + [1] Z + [10]           
                                    > [1] X + [1] Z + [9]            
                                    = cons(Y,n__first(X,activate(Z)))
          
                            from(X) = [9]                            
                                    > [8]                            
                                    = cons(X,n__from(s(X)))          
          
                            from(X) = [9]                            
                                    > [8]                            
                                    = n__from(X)                     
          
          
          Following rules are (at-least) weakly oriented:
                        activate#(X) =  [0]               
                                     >= [2]               
                                     =  c_1()             
          
          activate#(n__first(X1,X2)) =  [0]               
                                     >= [0]               
                                     =  c_2(first#(X1,X2))
          
               activate#(n__from(X)) =  [0]               
                                     >= [0]               
                                     =  c_3(from#(X))     
          
                       first#(X1,X2) =  [0]               
                                     >= [0]               
                                     =  c_4()             
          
                       first#(0(),Z) =  [0]               
                                     >= [1]               
                                     =  c_5()             
          
              first#(s(X),cons(Y,Z)) =  [0]               
                                     >= [4]               
                                     =  c_6(activate#(Z)) 
          
                            from#(X) =  [0]               
                                     >= [0]               
                                     =  c_7()             
          
                            from#(X) =  [0]               
                                     >= [1]               
                                     =  c_8()             
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 5: PredecessorEstimation WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_1()
            activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
            activate#(n__from(X)) -> c_3(from#(X))
            first#(X1,X2) -> c_4()
            first#(0(),Z) -> c_5()
            first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
            from#(X) -> c_7()
            from#(X) -> c_8()
        - Weak DPs:
            sel#(0(),cons(X,Z)) -> c_9()
            sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
        - Weak TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            first(X1,X2) -> n__first(X1,X2)
            first(0(),Z) -> nil()
            first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
        - Signature:
            {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1
            ,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,first#,from#,sel#} and constructors {0,cons
            ,n__first,n__from,nil,s}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,4,5,7,8}
        by application of
          Pre({1,4,5,7,8}) = {2,3,6}.
        Here rules are labelled as follows:
          1: activate#(X) -> c_1()
          2: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          3: activate#(n__from(X)) -> c_3(from#(X))
          4: first#(X1,X2) -> c_4()
          5: first#(0(),Z) -> c_5()
          6: first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
          7: from#(X) -> c_7()
          8: from#(X) -> c_8()
          9: sel#(0(),cons(X,Z)) -> c_9()
          10: sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
* Step 6: PredecessorEstimation WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
            activate#(n__from(X)) -> c_3(from#(X))
            first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
        - Weak DPs:
            activate#(X) -> c_1()
            first#(X1,X2) -> c_4()
            first#(0(),Z) -> c_5()
            from#(X) -> c_7()
            from#(X) -> c_8()
            sel#(0(),cons(X,Z)) -> c_9()
            sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
        - Weak TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            first(X1,X2) -> n__first(X1,X2)
            first(0(),Z) -> nil()
            first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
        - Signature:
            {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1
            ,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,first#,from#,sel#} and constructors {0,cons
            ,n__first,n__from,nil,s}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2}
        by application of
          Pre({2}) = {3}.
        Here rules are labelled as follows:
          1: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          2: activate#(n__from(X)) -> c_3(from#(X))
          3: first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
          4: activate#(X) -> c_1()
          5: first#(X1,X2) -> c_4()
          6: first#(0(),Z) -> c_5()
          7: from#(X) -> c_7()
          8: from#(X) -> c_8()
          9: sel#(0(),cons(X,Z)) -> c_9()
          10: sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
* Step 7: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
            first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
        - Weak DPs:
            activate#(X) -> c_1()
            activate#(n__from(X)) -> c_3(from#(X))
            first#(X1,X2) -> c_4()
            first#(0(),Z) -> c_5()
            from#(X) -> c_7()
            from#(X) -> c_8()
            sel#(0(),cons(X,Z)) -> c_9()
            sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
        - Weak TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            first(X1,X2) -> n__first(X1,X2)
            first(0(),Z) -> nil()
            first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
        - Signature:
            {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1
            ,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,first#,from#,sel#} and constructors {0,cons
            ,n__first,n__from,nil,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
             -->_1 first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)):2
             -->_1 first#(0(),Z) -> c_5():6
             -->_1 first#(X1,X2) -> c_4():5
          
          2:S:first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
             -->_1 activate#(n__from(X)) -> c_3(from#(X)):4
             -->_1 activate#(X) -> c_1():3
             -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):1
          
          3:W:activate#(X) -> c_1()
             
          
          4:W:activate#(n__from(X)) -> c_3(from#(X))
             -->_1 from#(X) -> c_8():8
             -->_1 from#(X) -> c_7():7
          
          5:W:first#(X1,X2) -> c_4()
             
          
          6:W:first#(0(),Z) -> c_5()
             
          
          7:W:from#(X) -> c_7()
             
          
          8:W:from#(X) -> c_8()
             
          
          9:W:sel#(0(),cons(X,Z)) -> c_9()
             
          
          10:W:sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
             -->_1 sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z))):10
             -->_1 sel#(0(),cons(X,Z)) -> c_9():9
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          10: sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
          9: sel#(0(),cons(X,Z)) -> c_9()
          5: first#(X1,X2) -> c_4()
          6: first#(0(),Z) -> c_5()
          3: activate#(X) -> c_1()
          4: activate#(n__from(X)) -> c_3(from#(X))
          7: from#(X) -> c_7()
          8: from#(X) -> c_8()
* Step 8: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
            first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
        - Weak TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            first(X1,X2) -> n__first(X1,X2)
            first(0(),Z) -> nil()
            first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
        - Signature:
            {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1
            ,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,first#,from#,sel#} and constructors {0,cons
            ,n__first,n__from,nil,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
* Step 9: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
            first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
        - Signature:
            {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1
            ,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,first#,from#,sel#} and constructors {0,cons
            ,n__first,n__from,nil,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
          
        Consider the set of all dependency pairs
          1: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          2: first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {2}
        These cover all (indirect) predecessors of dependency pairs
          {1,2}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
** Step 9.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
            first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
        - Signature:
            {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1
            ,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,first#,from#,sel#} and constructors {0,cons
            ,n__first,n__from,nil,s}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_6) = {1}
        
        Following symbols are considered usable:
          {activate#,first#,from#,sel#}
        TcT has computed the following interpretation:
                  p(0) = [0]                  
           p(activate) = [1] x1 + [1]         
               p(cons) = [1] x2 + [8]         
              p(first) = [1] x1 + [4] x2 + [2]
               p(from) = [2] x1 + [1]         
           p(n__first) = [1] x1 + [1] x2 + [0]
            p(n__from) = [0]                  
                p(nil) = [0]                  
                  p(s) = [0]                  
                p(sel) = [4] x1 + [1]         
          p(activate#) = [1] x1 + [0]         
             p(first#) = [1] x1 + [1] x2 + [0]
              p(from#) = [0]                  
               p(sel#) = [2] x1 + [1] x2 + [8]
                p(c_1) = [0]                  
                p(c_2) = [1] x1 + [0]         
                p(c_3) = [1]                  
                p(c_4) = [2]                  
                p(c_5) = [0]                  
                p(c_6) = [1] x1 + [0]         
                p(c_7) = [0]                  
                p(c_8) = [0]                  
                p(c_9) = [2]                  
               p(c_10) = [1] x1 + [1]         
        
        Following rules are strictly oriented:
        first#(s(X),cons(Y,Z)) = [1] Z + [8]      
                               > [1] Z + [0]      
                               = c_6(activate#(Z))
        
        
        Following rules are (at-least) weakly oriented:
        activate#(n__first(X1,X2)) =  [1] X1 + [1] X2 + [0]
                                   >= [1] X1 + [1] X2 + [0]
                                   =  c_2(first#(X1,X2))   
        
** Step 9.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        - Weak DPs:
            first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
        - Signature:
            {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1
            ,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,first#,from#,sel#} and constructors {0,cons
            ,n__first,n__from,nil,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

** Step 9.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
            first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
        - Signature:
            {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1
            ,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,first#,from#,sel#} and constructors {0,cons
            ,n__first,n__from,nil,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
             -->_1 first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)):2
          
          2:W:first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
             -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          2: first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
** Step 9.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1
            ,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,first#,from#,sel#} and constructors {0,cons
            ,n__first,n__from,nil,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))