* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
a__first(X1,X2) -> first(X1,X2)
a__first(0(),Z) -> nil()
a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
a__from(X) -> cons(mark(X),from(s(X)))
a__from(X) -> from(X)
a__sel(X1,X2) -> sel(X1,X2)
a__sel(0(),cons(X,Z)) -> mark(X)
a__sel(s(X),cons(Y,Z)) -> a__sel(mark(X),mark(Z))
mark(0()) -> 0()
mark(cons(X1,X2)) -> cons(mark(X1),X2)
mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
mark(from(X)) -> a__from(mark(X))
mark(nil()) -> nil()
mark(s(X)) -> s(mark(X))
mark(sel(X1,X2)) -> a__sel(mark(X1),mark(X2))
- Signature:
{a__first/2,a__from/1,a__sel/2,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1,sel/2}
- Obligation:
innermost runtime complexity wrt. defined symbols {a__first,a__from,a__sel,mark} and constructors {0,cons
,first,from,nil,s,sel}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
a__first(X1,X2) -> first(X1,X2)
a__first(0(),Z) -> nil()
a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
a__from(X) -> cons(mark(X),from(s(X)))
a__from(X) -> from(X)
a__sel(X1,X2) -> sel(X1,X2)
a__sel(0(),cons(X,Z)) -> mark(X)
a__sel(s(X),cons(Y,Z)) -> a__sel(mark(X),mark(Z))
mark(0()) -> 0()
mark(cons(X1,X2)) -> cons(mark(X1),X2)
mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
mark(from(X)) -> a__from(mark(X))
mark(nil()) -> nil()
mark(s(X)) -> s(mark(X))
mark(sel(X1,X2)) -> a__sel(mark(X1),mark(X2))
- Signature:
{a__first/2,a__from/1,a__sel/2,mark/1} / {0/0,cons/2,first/2,from/1,nil/0,s/1,sel/2}
- Obligation:
innermost runtime complexity wrt. defined symbols {a__first,a__from,a__sel,mark} and constructors {0,cons
,first,from,nil,s,sel}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
mark(x){x -> cons(x,y)} =
mark(cons(x,y)) ->^+ cons(mark(x),y)
= C[mark(x) = mark(x){}]
WORST_CASE(Omega(n^1),?)