* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
active(cons(X1,X2)) -> cons(active(X1),X2)
active(first(X1,X2)) -> first(X1,active(X2))
active(first(X1,X2)) -> first(active(X1),X2)
active(first(0(),Z)) -> mark(nil())
active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z)))
active(from(X)) -> from(active(X))
active(from(X)) -> mark(cons(X,from(s(X))))
active(s(X)) -> s(active(X))
active(sel(X1,X2)) -> sel(X1,active(X2))
active(sel(X1,X2)) -> sel(active(X1),X2)
active(sel(0(),cons(X,Z))) -> mark(X)
active(sel(s(X),cons(Y,Z))) -> mark(sel(X,Z))
cons(mark(X1),X2) -> mark(cons(X1,X2))
cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
first(X1,mark(X2)) -> mark(first(X1,X2))
first(mark(X1),X2) -> mark(first(X1,X2))
first(ok(X1),ok(X2)) -> ok(first(X1,X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(0()) -> ok(0())
proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
proper(first(X1,X2)) -> first(proper(X1),proper(X2))
proper(from(X)) -> from(proper(X))
proper(nil()) -> ok(nil())
proper(s(X)) -> s(proper(X))
proper(sel(X1,X2)) -> sel(proper(X1),proper(X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(X1,mark(X2)) -> mark(sel(X1,X2))
sel(mark(X1),X2) -> mark(sel(X1,X2))
sel(ok(X1),ok(X2)) -> ok(sel(X1,X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
- Signature:
{active/1,cons/2,first/2,from/1,proper/1,s/1,sel/2,top/1} / {0/0,mark/1,nil/0,ok/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {active,cons,first,from,proper,s,sel
,top} and constructors {0,mark,nil,ok}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
active(cons(X1,X2)) -> cons(active(X1),X2)
active(first(X1,X2)) -> first(X1,active(X2))
active(first(X1,X2)) -> first(active(X1),X2)
active(first(0(),Z)) -> mark(nil())
active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z)))
active(from(X)) -> from(active(X))
active(from(X)) -> mark(cons(X,from(s(X))))
active(s(X)) -> s(active(X))
active(sel(X1,X2)) -> sel(X1,active(X2))
active(sel(X1,X2)) -> sel(active(X1),X2)
active(sel(0(),cons(X,Z))) -> mark(X)
active(sel(s(X),cons(Y,Z))) -> mark(sel(X,Z))
cons(mark(X1),X2) -> mark(cons(X1,X2))
cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
first(X1,mark(X2)) -> mark(first(X1,X2))
first(mark(X1),X2) -> mark(first(X1,X2))
first(ok(X1),ok(X2)) -> ok(first(X1,X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
proper(0()) -> ok(0())
proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
proper(first(X1,X2)) -> first(proper(X1),proper(X2))
proper(from(X)) -> from(proper(X))
proper(nil()) -> ok(nil())
proper(s(X)) -> s(proper(X))
proper(sel(X1,X2)) -> sel(proper(X1),proper(X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
sel(X1,mark(X2)) -> mark(sel(X1,X2))
sel(mark(X1),X2) -> mark(sel(X1,X2))
sel(ok(X1),ok(X2)) -> ok(sel(X1,X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
- Signature:
{active/1,cons/2,first/2,from/1,proper/1,s/1,sel/2,top/1} / {0/0,mark/1,nil/0,ok/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {active,cons,first,from,proper,s,sel
,top} and constructors {0,mark,nil,ok}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
cons(x,y){x -> mark(x)} =
cons(mark(x),y) ->^+ mark(cons(x,y))
= C[cons(x,y) = cons(x,y){}]
WORST_CASE(Omega(n^1),?)