* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__diff(X1,X2)) -> diff(activate(X1),activate(X2))
            activate(n__p(X)) -> p(activate(X))
            activate(n__s(X)) -> s(activate(X))
            diff(X,Y) -> if(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y)))
            diff(X1,X2) -> n__diff(X1,X2)
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            leq(0(),Y) -> true()
            leq(s(X),0()) -> false()
            leq(s(X),s(Y)) -> leq(X,Y)
            p(X) -> n__p(X)
            p(0()) -> 0()
            p(s(X)) -> X
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,diff/2,if/3,leq/2,p/1,s/1} / {false/0,n__0/0,n__diff/2,n__p/1,n__s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,diff,if,leq,p,s} and constructors {false,n__0
            ,n__diff,n__p,n__s,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__diff(X1,X2)) -> diff(activate(X1),activate(X2))
            activate(n__p(X)) -> p(activate(X))
            activate(n__s(X)) -> s(activate(X))
            diff(X,Y) -> if(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y)))
            diff(X1,X2) -> n__diff(X1,X2)
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            leq(0(),Y) -> true()
            leq(s(X),0()) -> false()
            leq(s(X),s(Y)) -> leq(X,Y)
            p(X) -> n__p(X)
            p(0()) -> 0()
            p(s(X)) -> X
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,diff/2,if/3,leq/2,p/1,s/1} / {false/0,n__0/0,n__diff/2,n__p/1,n__s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,diff,if,leq,p,s} and constructors {false,n__0
            ,n__diff,n__p,n__s,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__diff(x,y)} =
            activate(n__diff(x,y)) ->^+ diff(activate(x),activate(y))
              = C[activate(x) = activate(x){}]

** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__diff(X1,X2)) -> diff(activate(X1),activate(X2))
            activate(n__p(X)) -> p(activate(X))
            activate(n__s(X)) -> s(activate(X))
            diff(X,Y) -> if(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y)))
            diff(X1,X2) -> n__diff(X1,X2)
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            leq(0(),Y) -> true()
            leq(s(X),0()) -> false()
            leq(s(X),s(Y)) -> leq(X,Y)
            p(X) -> n__p(X)
            p(0()) -> 0()
            p(s(X)) -> X
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,diff/2,if/3,leq/2,p/1,s/1} / {false/0,n__0/0,n__diff/2,n__p/1,n__s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,diff,if,leq,p,s} and constructors {false,n__0
            ,n__diff,n__p,n__s,true}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          leq(0(),Y) -> true()
          leq(s(X),0()) -> false()
          leq(s(X),s(Y)) -> leq(X,Y)
          p(0()) -> 0()
          p(s(X)) -> X
        All above mentioned rules can be savely removed.
** Step 1.b:2: DependencyPairs WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__diff(X1,X2)) -> diff(activate(X1),activate(X2))
            activate(n__p(X)) -> p(activate(X))
            activate(n__s(X)) -> s(activate(X))
            diff(X,Y) -> if(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y)))
            diff(X1,X2) -> n__diff(X1,X2)
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            p(X) -> n__p(X)
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,diff/2,if/3,leq/2,p/1,s/1} / {false/0,n__0/0,n__diff/2,n__p/1,n__s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,diff,if,leq,p,s} and constructors {false,n__0
            ,n__diff,n__p,n__s,true}
    + Applied Processor:
        DependencyPairs {dpKind_ = WIDP}
    + Details:
        We add the following weak innermost dependency pairs:
        
        Strict DPs
          0#() -> c_1()
          activate#(X) -> c_2()
          activate#(n__0()) -> c_3(0#())
          activate#(n__diff(X1,X2)) -> c_4(diff#(activate(X1),activate(X2)))
          activate#(n__p(X)) -> c_5(p#(activate(X)))
          activate#(n__s(X)) -> c_6(s#(activate(X)))
          diff#(X,Y) -> c_7(if#(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y))))
          diff#(X1,X2) -> c_8()
          if#(false(),X,Y) -> c_9(activate#(Y))
          if#(true(),X,Y) -> c_10(activate#(X))
          p#(X) -> c_11()
          s#(X) -> c_12()
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:3: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            0#() -> c_1()
            activate#(X) -> c_2()
            activate#(n__0()) -> c_3(0#())
            activate#(n__diff(X1,X2)) -> c_4(diff#(activate(X1),activate(X2)))
            activate#(n__p(X)) -> c_5(p#(activate(X)))
            activate#(n__s(X)) -> c_6(s#(activate(X)))
            diff#(X,Y) -> c_7(if#(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y))))
            diff#(X1,X2) -> c_8()
            if#(false(),X,Y) -> c_9(activate#(Y))
            if#(true(),X,Y) -> c_10(activate#(X))
            p#(X) -> c_11()
            s#(X) -> c_12()
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__diff(X1,X2)) -> diff(activate(X1),activate(X2))
            activate(n__p(X)) -> p(activate(X))
            activate(n__s(X)) -> s(activate(X))
            diff(X,Y) -> if(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y)))
            diff(X1,X2) -> n__diff(X1,X2)
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            p(X) -> n__p(X)
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,diff/2,if/3,leq/2,p/1,s/1,0#/0,activate#/1,diff#/2,if#/3,leq#/2,p#/1,s#/1} / {false/0,n__0/0
            ,n__diff/2,n__p/1,n__s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,diff#,if#,leq#,p#
            ,s#} and constructors {false,n__0,n__diff,n__p,n__s,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          0() -> n__0()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__diff(X1,X2)) -> diff(activate(X1),activate(X2))
          activate(n__p(X)) -> p(activate(X))
          activate(n__s(X)) -> s(activate(X))
          diff(X,Y) -> if(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y)))
          diff(X1,X2) -> n__diff(X1,X2)
          p(X) -> n__p(X)
          s(X) -> n__s(X)
          0#() -> c_1()
          activate#(X) -> c_2()
          activate#(n__0()) -> c_3(0#())
          activate#(n__diff(X1,X2)) -> c_4(diff#(activate(X1),activate(X2)))
          activate#(n__p(X)) -> c_5(p#(activate(X)))
          activate#(n__s(X)) -> c_6(s#(activate(X)))
          diff#(X,Y) -> c_7(if#(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y))))
          diff#(X1,X2) -> c_8()
          if#(false(),X,Y) -> c_9(activate#(Y))
          if#(true(),X,Y) -> c_10(activate#(X))
          p#(X) -> c_11()
          s#(X) -> c_12()
** Step 1.b:4: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            0#() -> c_1()
            activate#(X) -> c_2()
            activate#(n__0()) -> c_3(0#())
            activate#(n__diff(X1,X2)) -> c_4(diff#(activate(X1),activate(X2)))
            activate#(n__p(X)) -> c_5(p#(activate(X)))
            activate#(n__s(X)) -> c_6(s#(activate(X)))
            diff#(X,Y) -> c_7(if#(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y))))
            diff#(X1,X2) -> c_8()
            if#(false(),X,Y) -> c_9(activate#(Y))
            if#(true(),X,Y) -> c_10(activate#(X))
            p#(X) -> c_11()
            s#(X) -> c_12()
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__diff(X1,X2)) -> diff(activate(X1),activate(X2))
            activate(n__p(X)) -> p(activate(X))
            activate(n__s(X)) -> s(activate(X))
            diff(X,Y) -> if(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y)))
            diff(X1,X2) -> n__diff(X1,X2)
            p(X) -> n__p(X)
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,diff/2,if/3,leq/2,p/1,s/1,0#/0,activate#/1,diff#/2,if#/3,leq#/2,p#/1,s#/1} / {false/0,n__0/0
            ,n__diff/2,n__p/1,n__s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,diff#,if#,leq#,p#
            ,s#} and constructors {false,n__0,n__diff,n__p,n__s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(diff) = {1,2},
            uargs(p) = {1},
            uargs(s) = {1},
            uargs(diff#) = {1,2},
            uargs(p#) = {1},
            uargs(s#) = {1},
            uargs(c_3) = {1},
            uargs(c_4) = {1},
            uargs(c_5) = {1},
            uargs(c_6) = {1},
            uargs(c_9) = {1},
            uargs(c_10) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(0) = [2]                  
             p(activate) = [3] x1 + [1]         
                 p(diff) = [1] x1 + [1] x2 + [3]
                p(false) = [0]                  
                   p(if) = [0]                  
                  p(leq) = [4]                  
                 p(n__0) = [1]                  
              p(n__diff) = [1] x1 + [1] x2 + [2]
                 p(n__p) = [1] x1 + [1]         
                 p(n__s) = [1] x1 + [1]         
                    p(p) = [1] x1 + [2]         
                    p(s) = [1] x1 + [2]         
                 p(true) = [1]                  
                   p(0#) = [3]                  
            p(activate#) = [3] x1 + [6]         
                p(diff#) = [1] x1 + [1] x2 + [7]
                  p(if#) = [3] x2 + [3] x3 + [0]
                 p(leq#) = [2] x2 + [0]         
                   p(p#) = [1] x1 + [0]         
                   p(s#) = [1] x1 + [3]         
                  p(c_1) = [0]                  
                  p(c_2) = [2]                  
                  p(c_3) = [1] x1 + [6]         
                  p(c_4) = [1] x1 + [2]         
                  p(c_5) = [1] x1 + [3]         
                  p(c_6) = [1] x1 + [2]         
                  p(c_7) = [3]                  
                  p(c_8) = [0]                  
                  p(c_9) = [1] x1 + [6]         
                 p(c_10) = [1] x1 + [3]         
                 p(c_11) = [1]                  
                 p(c_12) = [1]                  
          
          Following rules are strictly oriented:
                               0#() = [3]                                               
                                    > [0]                                               
                                    = c_1()                                             
          
                       activate#(X) = [3] X + [6]                                       
                                    > [2]                                               
                                    = c_2()                                             
          
          activate#(n__diff(X1,X2)) = [3] X1 + [3] X2 + [12]                            
                                    > [3] X1 + [3] X2 + [11]                            
                                    = c_4(diff#(activate(X1),activate(X2)))             
          
                 activate#(n__p(X)) = [3] X + [9]                                       
                                    > [3] X + [4]                                       
                                    = c_5(p#(activate(X)))                              
          
                 activate#(n__s(X)) = [3] X + [9]                                       
                                    > [3] X + [6]                                       
                                    = c_6(s#(activate(X)))                              
          
                         diff#(X,Y) = [1] X + [1] Y + [7]                               
                                    > [3]                                               
                                    = c_7(if#(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y))))
          
                       diff#(X1,X2) = [1] X1 + [1] X2 + [7]                             
                                    > [0]                                               
                                    = c_8()                                             
          
                              s#(X) = [1] X + [3]                                       
                                    > [1]                                               
                                    = c_12()                                            
          
                                0() = [2]                                               
                                    > [1]                                               
                                    = n__0()                                            
          
                        activate(X) = [3] X + [1]                                       
                                    > [1] X + [0]                                       
                                    = X                                                 
          
                   activate(n__0()) = [4]                                               
                                    > [2]                                               
                                    = 0()                                               
          
           activate(n__diff(X1,X2)) = [3] X1 + [3] X2 + [7]                             
                                    > [3] X1 + [3] X2 + [5]                             
                                    = diff(activate(X1),activate(X2))                   
          
                  activate(n__p(X)) = [3] X + [4]                                       
                                    > [3] X + [3]                                       
                                    = p(activate(X))                                    
          
                  activate(n__s(X)) = [3] X + [4]                                       
                                    > [3] X + [3]                                       
                                    = s(activate(X))                                    
          
                          diff(X,Y) = [1] X + [1] Y + [3]                               
                                    > [0]                                               
                                    = if(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y)))      
          
                        diff(X1,X2) = [1] X1 + [1] X2 + [3]                             
                                    > [1] X1 + [1] X2 + [2]                             
                                    = n__diff(X1,X2)                                    
          
                               p(X) = [1] X + [2]                                       
                                    > [1] X + [1]                                       
                                    = n__p(X)                                           
          
                               s(X) = [1] X + [2]                                       
                                    > [1] X + [1]                                       
                                    = n__s(X)                                           
          
          
          Following rules are (at-least) weakly oriented:
          activate#(n__0()) =  [9]                
                            >= [9]                
                            =  c_3(0#())          
          
           if#(false(),X,Y) =  [3] X + [3] Y + [0]
                            >= [3] Y + [12]       
                            =  c_9(activate#(Y))  
          
            if#(true(),X,Y) =  [3] X + [3] Y + [0]
                            >= [3] X + [9]        
                            =  c_10(activate#(X)) 
          
                      p#(X) =  [1] X + [0]        
                            >= [1]                
                            =  c_11()             
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:5: PredecessorEstimation WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__0()) -> c_3(0#())
            if#(false(),X,Y) -> c_9(activate#(Y))
            if#(true(),X,Y) -> c_10(activate#(X))
            p#(X) -> c_11()
        - Weak DPs:
            0#() -> c_1()
            activate#(X) -> c_2()
            activate#(n__diff(X1,X2)) -> c_4(diff#(activate(X1),activate(X2)))
            activate#(n__p(X)) -> c_5(p#(activate(X)))
            activate#(n__s(X)) -> c_6(s#(activate(X)))
            diff#(X,Y) -> c_7(if#(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y))))
            diff#(X1,X2) -> c_8()
            s#(X) -> c_12()
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__diff(X1,X2)) -> diff(activate(X1),activate(X2))
            activate(n__p(X)) -> p(activate(X))
            activate(n__s(X)) -> s(activate(X))
            diff(X,Y) -> if(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y)))
            diff(X1,X2) -> n__diff(X1,X2)
            p(X) -> n__p(X)
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,diff/2,if/3,leq/2,p/1,s/1,0#/0,activate#/1,diff#/2,if#/3,leq#/2,p#/1,s#/1} / {false/0,n__0/0
            ,n__diff/2,n__p/1,n__s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,diff#,if#,leq#,p#
            ,s#} and constructors {false,n__0,n__diff,n__p,n__s,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1}
        by application of
          Pre({1}) = {2,3}.
        Here rules are labelled as follows:
          1: activate#(n__0()) -> c_3(0#())
          2: if#(false(),X,Y) -> c_9(activate#(Y))
          3: if#(true(),X,Y) -> c_10(activate#(X))
          4: p#(X) -> c_11()
          5: 0#() -> c_1()
          6: activate#(X) -> c_2()
          7: activate#(n__diff(X1,X2)) -> c_4(diff#(activate(X1),activate(X2)))
          8: activate#(n__p(X)) -> c_5(p#(activate(X)))
          9: activate#(n__s(X)) -> c_6(s#(activate(X)))
          10: diff#(X,Y) -> c_7(if#(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y))))
          11: diff#(X1,X2) -> c_8()
          12: s#(X) -> c_12()
** Step 1.b:6: PredecessorEstimation WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            if#(false(),X,Y) -> c_9(activate#(Y))
            if#(true(),X,Y) -> c_10(activate#(X))
            p#(X) -> c_11()
        - Weak DPs:
            0#() -> c_1()
            activate#(X) -> c_2()
            activate#(n__0()) -> c_3(0#())
            activate#(n__diff(X1,X2)) -> c_4(diff#(activate(X1),activate(X2)))
            activate#(n__p(X)) -> c_5(p#(activate(X)))
            activate#(n__s(X)) -> c_6(s#(activate(X)))
            diff#(X,Y) -> c_7(if#(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y))))
            diff#(X1,X2) -> c_8()
            s#(X) -> c_12()
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__diff(X1,X2)) -> diff(activate(X1),activate(X2))
            activate(n__p(X)) -> p(activate(X))
            activate(n__s(X)) -> s(activate(X))
            diff(X,Y) -> if(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y)))
            diff(X1,X2) -> n__diff(X1,X2)
            p(X) -> n__p(X)
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,diff/2,if/3,leq/2,p/1,s/1,0#/0,activate#/1,diff#/2,if#/3,leq#/2,p#/1,s#/1} / {false/0,n__0/0
            ,n__diff/2,n__p/1,n__s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,diff#,if#,leq#,p#
            ,s#} and constructors {false,n__0,n__diff,n__p,n__s,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,2}
        by application of
          Pre({1,2}) = {}.
        Here rules are labelled as follows:
          1: if#(false(),X,Y) -> c_9(activate#(Y))
          2: if#(true(),X,Y) -> c_10(activate#(X))
          3: p#(X) -> c_11()
          4: 0#() -> c_1()
          5: activate#(X) -> c_2()
          6: activate#(n__0()) -> c_3(0#())
          7: activate#(n__diff(X1,X2)) -> c_4(diff#(activate(X1),activate(X2)))
          8: activate#(n__p(X)) -> c_5(p#(activate(X)))
          9: activate#(n__s(X)) -> c_6(s#(activate(X)))
          10: diff#(X,Y) -> c_7(if#(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y))))
          11: diff#(X1,X2) -> c_8()
          12: s#(X) -> c_12()
** Step 1.b:7: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            p#(X) -> c_11()
        - Weak DPs:
            0#() -> c_1()
            activate#(X) -> c_2()
            activate#(n__0()) -> c_3(0#())
            activate#(n__diff(X1,X2)) -> c_4(diff#(activate(X1),activate(X2)))
            activate#(n__p(X)) -> c_5(p#(activate(X)))
            activate#(n__s(X)) -> c_6(s#(activate(X)))
            diff#(X,Y) -> c_7(if#(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y))))
            diff#(X1,X2) -> c_8()
            if#(false(),X,Y) -> c_9(activate#(Y))
            if#(true(),X,Y) -> c_10(activate#(X))
            s#(X) -> c_12()
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__diff(X1,X2)) -> diff(activate(X1),activate(X2))
            activate(n__p(X)) -> p(activate(X))
            activate(n__s(X)) -> s(activate(X))
            diff(X,Y) -> if(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y)))
            diff(X1,X2) -> n__diff(X1,X2)
            p(X) -> n__p(X)
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,diff/2,if/3,leq/2,p/1,s/1,0#/0,activate#/1,diff#/2,if#/3,leq#/2,p#/1,s#/1} / {false/0,n__0/0
            ,n__diff/2,n__p/1,n__s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,diff#,if#,leq#,p#
            ,s#} and constructors {false,n__0,n__diff,n__p,n__s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:p#(X) -> c_11()
             
          
          2:W:0#() -> c_1()
             
          
          3:W:activate#(X) -> c_2()
             
          
          4:W:activate#(n__0()) -> c_3(0#())
             -->_1 0#() -> c_1():2
          
          5:W:activate#(n__diff(X1,X2)) -> c_4(diff#(activate(X1),activate(X2)))
             -->_1 diff#(X1,X2) -> c_8():9
             -->_1 diff#(X,Y) -> c_7(if#(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y)))):8
          
          6:W:activate#(n__p(X)) -> c_5(p#(activate(X)))
             -->_1 p#(X) -> c_11():1
          
          7:W:activate#(n__s(X)) -> c_6(s#(activate(X)))
             -->_1 s#(X) -> c_12():12
          
          8:W:diff#(X,Y) -> c_7(if#(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y))))
             
          
          9:W:diff#(X1,X2) -> c_8()
             
          
          10:W:if#(false(),X,Y) -> c_9(activate#(Y))
             -->_1 activate#(n__s(X)) -> c_6(s#(activate(X))):7
             -->_1 activate#(n__p(X)) -> c_5(p#(activate(X))):6
             -->_1 activate#(n__diff(X1,X2)) -> c_4(diff#(activate(X1),activate(X2))):5
             -->_1 activate#(n__0()) -> c_3(0#()):4
             -->_1 activate#(X) -> c_2():3
          
          11:W:if#(true(),X,Y) -> c_10(activate#(X))
             -->_1 activate#(n__s(X)) -> c_6(s#(activate(X))):7
             -->_1 activate#(n__p(X)) -> c_5(p#(activate(X))):6
             -->_1 activate#(n__diff(X1,X2)) -> c_4(diff#(activate(X1),activate(X2))):5
             -->_1 activate#(n__0()) -> c_3(0#()):4
             -->_1 activate#(X) -> c_2():3
          
          12:W:s#(X) -> c_12()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          7: activate#(n__s(X)) -> c_6(s#(activate(X)))
          12: s#(X) -> c_12()
          5: activate#(n__diff(X1,X2)) -> c_4(diff#(activate(X1),activate(X2)))
          8: diff#(X,Y) -> c_7(if#(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y))))
          9: diff#(X1,X2) -> c_8()
          4: activate#(n__0()) -> c_3(0#())
          3: activate#(X) -> c_2()
          2: 0#() -> c_1()
** Step 1.b:8: RemoveHeads WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            p#(X) -> c_11()
        - Weak DPs:
            activate#(n__p(X)) -> c_5(p#(activate(X)))
            if#(false(),X,Y) -> c_9(activate#(Y))
            if#(true(),X,Y) -> c_10(activate#(X))
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__diff(X1,X2)) -> diff(activate(X1),activate(X2))
            activate(n__p(X)) -> p(activate(X))
            activate(n__s(X)) -> s(activate(X))
            diff(X,Y) -> if(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y)))
            diff(X1,X2) -> n__diff(X1,X2)
            p(X) -> n__p(X)
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,diff/2,if/3,leq/2,p/1,s/1,0#/0,activate#/1,diff#/2,if#/3,leq#/2,p#/1,s#/1} / {false/0,n__0/0
            ,n__diff/2,n__p/1,n__s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,diff#,if#,leq#,p#
            ,s#} and constructors {false,n__0,n__diff,n__p,n__s,true}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:p#(X) -> c_11()
           
        
        6:W:activate#(n__p(X)) -> c_5(p#(activate(X)))
           -->_1 p#(X) -> c_11():1
        
        10:W:if#(false(),X,Y) -> c_9(activate#(Y))
           -->_1 activate#(n__p(X)) -> c_5(p#(activate(X))):6
        
        11:W:if#(true(),X,Y) -> c_10(activate#(X))
           -->_1 activate#(n__p(X)) -> c_5(p#(activate(X))):6
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(10,if#(false(),X,Y) -> c_9(activate#(Y))),(11,if#(true(),X,Y) -> c_10(activate#(X)))]
** Step 1.b:9: Trivial WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            p#(X) -> c_11()
        - Weak DPs:
            activate#(n__p(X)) -> c_5(p#(activate(X)))
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__diff(X1,X2)) -> diff(activate(X1),activate(X2))
            activate(n__p(X)) -> p(activate(X))
            activate(n__s(X)) -> s(activate(X))
            diff(X,Y) -> if(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y)))
            diff(X1,X2) -> n__diff(X1,X2)
            p(X) -> n__p(X)
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,diff/2,if/3,leq/2,p/1,s/1,0#/0,activate#/1,diff#/2,if#/3,leq#/2,p#/1,s#/1} / {false/0,n__0/0
            ,n__diff/2,n__p/1,n__s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,diff#,if#,leq#,p#
            ,s#} and constructors {false,n__0,n__diff,n__p,n__s,true}
    + Applied Processor:
        Trivial
    + Details:
        Consider the dependency graph
          1:S:p#(X) -> c_11()
             
          
          6:W:activate#(n__p(X)) -> c_5(p#(activate(X)))
             -->_1 p#(X) -> c_11():1
          
        The dependency graph contains no loops, we remove all dependency pairs.
** Step 1.b:10: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__diff(X1,X2)) -> diff(activate(X1),activate(X2))
            activate(n__p(X)) -> p(activate(X))
            activate(n__s(X)) -> s(activate(X))
            diff(X,Y) -> if(leq(X,Y),n__0(),n__s(n__diff(n__p(X),Y)))
            diff(X1,X2) -> n__diff(X1,X2)
            p(X) -> n__p(X)
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,diff/2,if/3,leq/2,p/1,s/1,0#/0,activate#/1,diff#/2,if#/3,leq#/2,p#/1,s#/1} / {false/0,n__0/0
            ,n__diff/2,n__p/1,n__s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,diff#,if#,leq#,p#
            ,s#} and constructors {false,n__0,n__diff,n__p,n__s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))