0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxWeightedTrs
↳5 InnermostUnusableRulesProof (BOTH BOUNDS(ID, ID), 2 ms)
↳6 CpxWeightedTrs
↳7 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedTrs
↳9 CompletionProof (UPPER BOUND(ID), 0 ms)
↳10 CpxTypedWeightedCompleteTrs
↳11 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳12 CpxRNTS
↳13 CompleteCoflocoProof (⇔, 266 ms)
↳14 BOUNDS(1, n^1)
p(0) → 0
p(s(X)) → X
leq(0, Y) → true
leq(s(X), 0) → false
leq(s(X), s(Y)) → leq(X, Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
diff(X, Y) → if(leq(X, Y), n__0, n__s(n__diff(n__p(X), Y)))
0 → n__0
s(X) → n__s(X)
diff(X1, X2) → n__diff(X1, X2)
p(X) → n__p(X)
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__diff(X1, X2)) → diff(activate(X1), activate(X2))
activate(n__p(X)) → p(activate(X))
activate(X) → X
p(0) → 0 [1]
p(s(X)) → X [1]
leq(0, Y) → true [1]
leq(s(X), 0) → false [1]
leq(s(X), s(Y)) → leq(X, Y) [1]
if(true, X, Y) → activate(X) [1]
if(false, X, Y) → activate(Y) [1]
diff(X, Y) → if(leq(X, Y), n__0, n__s(n__diff(n__p(X), Y))) [1]
0 → n__0 [1]
s(X) → n__s(X) [1]
diff(X1, X2) → n__diff(X1, X2) [1]
p(X) → n__p(X) [1]
activate(n__0) → 0 [1]
activate(n__s(X)) → s(activate(X)) [1]
activate(n__diff(X1, X2)) → diff(activate(X1), activate(X2)) [1]
activate(n__p(X)) → p(activate(X)) [1]
activate(X) → X [1]
0 => 0' |
p(0') → 0' [1]
p(s(X)) → X [1]
leq(0', Y) → true [1]
leq(s(X), 0') → false [1]
leq(s(X), s(Y)) → leq(X, Y) [1]
if(true, X, Y) → activate(X) [1]
if(false, X, Y) → activate(Y) [1]
diff(X, Y) → if(leq(X, Y), n__0, n__s(n__diff(n__p(X), Y))) [1]
0' → n__0 [1]
s(X) → n__s(X) [1]
diff(X1, X2) → n__diff(X1, X2) [1]
p(X) → n__p(X) [1]
activate(n__0) → 0' [1]
activate(n__s(X)) → s(activate(X)) [1]
activate(n__diff(X1, X2)) → diff(activate(X1), activate(X2)) [1]
activate(n__p(X)) → p(activate(X)) [1]
activate(X) → X [1]
p(0') → 0' [1]
p(s(X)) → X [1]
leq(0', Y) → true [1]
leq(s(X), 0') → false [1]
leq(s(X), s(Y)) → leq(X, Y) [1]
0' → n__0 [1]
s(X) → n__s(X) [1]
if(true, X, Y) → activate(X) [1]
if(false, X, Y) → activate(Y) [1]
diff(X, Y) → if(leq(X, Y), n__0, n__s(n__diff(n__p(X), Y))) [1]
0' → n__0 [1]
s(X) → n__s(X) [1]
diff(X1, X2) → n__diff(X1, X2) [1]
p(X) → n__p(X) [1]
activate(n__0) → 0' [1]
activate(n__s(X)) → s(activate(X)) [1]
activate(n__diff(X1, X2)) → diff(activate(X1), activate(X2)) [1]
activate(n__p(X)) → p(activate(X)) [1]
activate(X) → X [1]
if(true, X, Y) → activate(X) [1]
if(false, X, Y) → activate(Y) [1]
diff(X, Y) → if(leq(X, Y), n__0, n__s(n__diff(n__p(X), Y))) [1]
0' → n__0 [1]
s(X) → n__s(X) [1]
diff(X1, X2) → n__diff(X1, X2) [1]
p(X) → n__p(X) [1]
activate(n__0) → 0' [1]
activate(n__s(X)) → s(activate(X)) [1]
activate(n__diff(X1, X2)) → diff(activate(X1), activate(X2)) [1]
activate(n__p(X)) → p(activate(X)) [1]
activate(X) → X [1]
if :: true:false:leq → n__0:n__p:n__diff:n__s → n__0:n__p:n__diff:n__s → n__0:n__p:n__diff:n__s true :: true:false:leq activate :: n__0:n__p:n__diff:n__s → n__0:n__p:n__diff:n__s false :: true:false:leq diff :: n__0:n__p:n__diff:n__s → n__0:n__p:n__diff:n__s → n__0:n__p:n__diff:n__s leq :: n__0:n__p:n__diff:n__s → n__0:n__p:n__diff:n__s → true:false:leq n__0 :: n__0:n__p:n__diff:n__s n__s :: n__0:n__p:n__diff:n__s → n__0:n__p:n__diff:n__s n__diff :: n__0:n__p:n__diff:n__s → n__0:n__p:n__diff:n__s → n__0:n__p:n__diff:n__s n__p :: n__0:n__p:n__diff:n__s → n__0:n__p:n__diff:n__s 0' :: n__0:n__p:n__diff:n__s s :: n__0:n__p:n__diff:n__s → n__0:n__p:n__diff:n__s p :: n__0:n__p:n__diff:n__s → n__0:n__p:n__diff:n__s |
if(v0, v1, v2) → null_if [0]
null_if
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
true => 1
false => 0
n__0 => 0
null_if => 0
0' -{ 1 }→ 0 :|:
activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 1 }→ s(activate(X)) :|: z = 1 + X, X >= 0
activate(z) -{ 1 }→ p(activate(X)) :|: z = 1 + X, X >= 0
activate(z) -{ 1 }→ diff(activate(X1), activate(X2)) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 1 }→ 0' :|: z = 0
diff(z, z') -{ 1 }→ if(1 + X + Y, 0, 1 + (1 + (1 + X) + Y)) :|: z' = Y, Y >= 0, X >= 0, z = X
diff(z, z') -{ 1 }→ 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2
if(z, z', z'') -{ 1 }→ activate(X) :|: z' = X, Y >= 0, z = 1, z'' = Y, X >= 0
if(z, z', z'') -{ 1 }→ activate(Y) :|: z' = X, Y >= 0, z'' = Y, X >= 0, z = 0
if(z, z', z'') -{ 0 }→ 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0
p(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
s(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
eq(start(V, V1, V2),0,[if(V, V1, V2, Out)],[V >= 0,V1 >= 0,V2 >= 0]). eq(start(V, V1, V2),0,[diff(V, V1, Out)],[V >= 0,V1 >= 0]). eq(start(V, V1, V2),0,[fun(Out)],[]). eq(start(V, V1, V2),0,[s(V, Out)],[V >= 0]). eq(start(V, V1, V2),0,[p(V, Out)],[V >= 0]). eq(start(V, V1, V2),0,[activate(V, Out)],[V >= 0]). eq(if(V, V1, V2, Out),1,[activate(X3, Ret)],[Out = Ret,V1 = X3,Y1 >= 0,V = 1,V2 = Y1,X3 >= 0]). eq(if(V, V1, V2, Out),1,[activate(Y2, Ret1)],[Out = Ret1,V1 = X4,Y2 >= 0,V2 = Y2,X4 >= 0,V = 0]). eq(diff(V, V1, Out),1,[if(1 + X5 + Y3, 0, 1 + (1 + (1 + X5) + Y3), Ret2)],[Out = Ret2,V1 = Y3,Y3 >= 0,X5 >= 0,V = X5]). eq(fun(Out),1,[],[Out = 0]). eq(s(V, Out),1,[],[Out = 1 + X6,X6 >= 0,V = X6]). eq(diff(V, V1, Out),1,[],[Out = 1 + X11 + X21,X11 >= 0,X21 >= 0,V = X11,V1 = X21]). eq(p(V, Out),1,[],[Out = 1 + X7,X7 >= 0,V = X7]). eq(activate(V, Out),1,[fun(Ret3)],[Out = Ret3,V = 0]). eq(activate(V, Out),1,[activate(X8, Ret0),s(Ret0, Ret4)],[Out = Ret4,V = 1 + X8,X8 >= 0]). eq(activate(V, Out),1,[activate(X12, Ret01),activate(X22, Ret11),diff(Ret01, Ret11, Ret5)],[Out = Ret5,X12 >= 0,X22 >= 0,V = 1 + X12 + X22]). eq(activate(V, Out),1,[activate(X9, Ret02),p(Ret02, Ret6)],[Out = Ret6,V = 1 + X9,X9 >= 0]). eq(activate(V, Out),1,[],[Out = X10,X10 >= 0,V = X10]). eq(if(V, V1, V2, Out),0,[],[Out = 0,V3 >= 0,V2 = V4,V5 >= 0,V = V3,V1 = V5,V4 >= 0]). input_output_vars(if(V,V1,V2,Out),[V,V1,V2],[Out]). input_output_vars(diff(V,V1,Out),[V,V1],[Out]). input_output_vars(fun(Out),[],[Out]). input_output_vars(s(V,Out),[V],[Out]). input_output_vars(p(V,Out),[V],[Out]). input_output_vars(activate(V,Out),[V],[Out]). |
CoFloCo proof output:
Preprocessing Cost Relations
=====================================
#### Computed strongly connected components
0. non_recursive : [fun/1]
1. non_recursive : [p/2]
2. non_recursive : [s/2]
3. recursive [non_tail,multiple] : [activate/2,diff/3,if/4]
4. non_recursive : [start/3]
#### Obtained direct recursion through partial evaluation
0. SCC is completely evaluated into other SCCs
1. SCC is completely evaluated into other SCCs
2. SCC is completely evaluated into other SCCs
3. SCC is partially evaluated into activate/2
4. SCC is partially evaluated into start/3
Control-Flow Refinement of Cost Relations
=====================================
### Specialization of cost equations activate/2
* CE 11 is refined into CE [14]
* CE 13 is refined into CE [15]
* CE 12 is refined into CE [16]
* CE 10 is refined into CE [17]
* CE 8 is refined into CE [18]
* CE 9 is refined into CE [19]
### Cost equations --> "Loop" of activate/2
* CEs [19] --> Loop 7
* CEs [17] --> Loop 8
* CEs [18] --> Loop 9
* CEs [16] --> Loop 10
* CEs [14,15] --> Loop 11
### Ranking functions of CR activate(V,Out)
* RF of phase [7,8,9,10]: [V]
#### Partial ranking functions of CR activate(V,Out)
* Partial RF of phase [7,8,9,10]:
- RF of loop [7:1,7:2,7:3,8:1,8:2,9:1,9:2,10:1]:
V
### Specialization of cost equations start/3
* CE 2 is refined into CE [20]
* CE 3 is refined into CE [21]
* CE 4 is refined into CE [22,23]
* CE 5 is refined into CE [24]
* CE 6 is refined into CE [25,26]
* CE 7 is refined into CE [27,28]
### Cost equations --> "Loop" of start/3
* CEs [20,21,22,23,24,25,26,27,28] --> Loop 12
### Ranking functions of CR start(V,V1,V2)
#### Partial ranking functions of CR start(V,V1,V2)
Computing Bounds
=====================================
#### Cost of chains of activate(V,Out):
* Chain [11]: 2
with precondition: [V=Out,V>=0]
* Chain [multiple([7,8,9,10],[[11]])]: 9*it(7)+2*it([11])+0
Such that:it([11]) =< 2*V+1
aux(1) =< V
it(7) =< aux(1)
with precondition: [V>=1,Out>=0,V>=Out]
#### Cost of chains of start(V,V1,V2):
* Chain [12]: 2*s(1)+9*s(3)+2*s(4)+9*s(6)+2*s(7)+9*s(9)+4
Such that:s(8) =< V
s(7) =< 2*V+1
s(5) =< V1
s(4) =< 2*V1+1
s(2) =< V2
s(1) =< 2*V2+1
s(9) =< s(8)
s(6) =< s(5)
s(3) =< s(2)
with precondition: []
Closed-form bounds of start(V,V1,V2):
-------------------------------------
* Chain [12] with precondition: []
- Upper bound: nat(V)*9+4+nat(V1)*9+nat(V2)*9+nat(2*V+1)*2+nat(2*V1+1)*2+nat(2*V2+1)*2
- Complexity: n
### Maximum cost of start(V,V1,V2): nat(V)*9+4+nat(V1)*9+nat(V2)*9+nat(2*V+1)*2+nat(2*V1+1)*2+nat(2*V2+1)*2
Asymptotic class: n
* Total analysis performed in 197 ms.