* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z)))
            2ndspos(0(),Z) -> rnil()
            2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z)))
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__from(X)) -> from(X)
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square
            ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z)))
            2ndspos(0(),Z) -> rnil()
            2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z)))
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__from(X)) -> from(X)
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square
            ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          plus(x,y){x -> s(x)} =
            plus(s(x),y) ->^+ s(plus(x,y))
              = C[plus(x,y) = plus(x,y){}]

** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z)))
            2ndspos(0(),Z) -> rnil()
            2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z)))
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__from(X)) -> from(X)
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square
            ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z)))
          2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z)))
        All above mentioned rules can be savely removed.
** Step 1.b:2: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndspos(0(),Z) -> rnil()
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__from(X)) -> from(X)
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square
            ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(2ndspos) = {2},
            uargs(plus) = {2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
             p(2ndsneg) = [0]                  
             p(2ndspos) = [1] x2 + [0]         
            p(activate) = [8] x1 + [3]         
                p(cons) = [1]                  
                p(from) = [8] x1 + [0]         
             p(n__cons) = [0]                  
             p(n__from) = [1] x1 + [2]         
            p(negrecip) = [1] x1 + [0]         
                  p(pi) = [0]                  
                p(plus) = [1] x2 + [1]         
            p(posrecip) = [1] x1 + [0]         
               p(rcons) = [1] x1 + [1] x2 + [0]
                p(rnil) = [0]                  
                   p(s) = [1] x1 + [0]         
              p(square) = [1] x1 + [0]         
               p(times) = [1] x1 + [9]         
          
          Following rules are strictly oriented:
                       activate(X) = [8] X + [3]   
                                   > [1] X + [0]   
                                   = X             
          
          activate(n__cons(X1,X2)) = [3]           
                                   > [1]           
                                   = cons(X1,X2)   
          
              activate(n__from(X)) = [8] X + [19]  
                                   > [8] X + [0]   
                                   = from(X)       
          
                       cons(X1,X2) = [1]           
                                   > [0]           
                                   = n__cons(X1,X2)
          
                       plus(0(),Y) = [1] Y + [1]   
                                   > [1] Y + [0]   
                                   = Y             
          
                      times(0(),Y) = [9]           
                                   > [0]           
                                   = 0()           
          
          
          Following rules are (at-least) weakly oriented:
          2ndsneg(0(),Z) =  [0]                  
                         >= [0]                  
                         =  rnil()               
          
          2ndspos(0(),Z) =  [1] Z + [0]          
                         >= [0]                  
                         =  rnil()               
          
                 from(X) =  [8] X + [0]          
                         >= [1]                  
                         =  cons(X,n__from(s(X)))
          
                 from(X) =  [8] X + [0]          
                         >= [1] X + [2]          
                         =  n__from(X)           
          
                   pi(X) =  [0]                  
                         >= [0]                  
                         =  2ndspos(X,from(0())) 
          
            plus(s(X),Y) =  [1] Y + [1]          
                         >= [1] Y + [1]          
                         =  s(plus(X,Y))         
          
               square(X) =  [1] X + [0]          
                         >= [1] X + [9]          
                         =  times(X,X)           
          
           times(s(X),Y) =  [1] X + [9]          
                         >= [1] X + [10]         
                         =  plus(Y,times(X,Y))   
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:3: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndspos(0(),Z) -> rnil()
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(s(X),Y) -> s(plus(X,Y))
            square(X) -> times(X,X)
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Weak TRS:
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__from(X)) -> from(X)
            cons(X1,X2) -> n__cons(X1,X2)
            plus(0(),Y) -> Y
            times(0(),Y) -> 0()
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square
            ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(2ndspos) = {2},
            uargs(plus) = {2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [4]                  
             p(2ndsneg) = [0]                  
             p(2ndspos) = [1] x2 + [0]         
            p(activate) = [6] x1 + [0]         
                p(cons) = [4] x1 + [0]         
                p(from) = [4] x1 + [10]        
             p(n__cons) = [1] x1 + [0]         
             p(n__from) = [1] x1 + [4]         
            p(negrecip) = [1] x1 + [0]         
                  p(pi) = [4] x1 + [0]         
                p(plus) = [1] x2 + [0]         
            p(posrecip) = [1] x1 + [0]         
               p(rcons) = [1] x1 + [1] x2 + [0]
                p(rnil) = [0]                  
                   p(s) = [1] x1 + [0]         
              p(square) = [1] x1 + [0]         
               p(times) = [12]                 
          
          Following rules are strictly oriented:
          from(X) = [4] X + [10]         
                  > [4] X + [0]          
                  = cons(X,n__from(s(X)))
          
          from(X) = [4] X + [10]         
                  > [1] X + [4]          
                  = n__from(X)           
          
          
          Following rules are (at-least) weakly oriented:
                    2ndsneg(0(),Z) =  [0]                 
                                   >= [0]                 
                                   =  rnil()              
          
                    2ndspos(0(),Z) =  [1] Z + [0]         
                                   >= [0]                 
                                   =  rnil()              
          
                       activate(X) =  [6] X + [0]         
                                   >= [1] X + [0]         
                                   =  X                   
          
          activate(n__cons(X1,X2)) =  [6] X1 + [0]        
                                   >= [4] X1 + [0]        
                                   =  cons(X1,X2)         
          
              activate(n__from(X)) =  [6] X + [24]        
                                   >= [4] X + [10]        
                                   =  from(X)             
          
                       cons(X1,X2) =  [4] X1 + [0]        
                                   >= [1] X1 + [0]        
                                   =  n__cons(X1,X2)      
          
                             pi(X) =  [4] X + [0]         
                                   >= [26]                
                                   =  2ndspos(X,from(0()))
          
                       plus(0(),Y) =  [1] Y + [0]         
                                   >= [1] Y + [0]         
                                   =  Y                   
          
                      plus(s(X),Y) =  [1] Y + [0]         
                                   >= [1] Y + [0]         
                                   =  s(plus(X,Y))        
          
                         square(X) =  [1] X + [0]         
                                   >= [12]                
                                   =  times(X,X)          
          
                      times(0(),Y) =  [12]                
                                   >= [4]                 
                                   =  0()                 
          
                     times(s(X),Y) =  [12]                
                                   >= [12]                
                                   =  plus(Y,times(X,Y))  
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:4: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndspos(0(),Z) -> rnil()
            pi(X) -> 2ndspos(X,from(0()))
            plus(s(X),Y) -> s(plus(X,Y))
            square(X) -> times(X,X)
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Weak TRS:
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__from(X)) -> from(X)
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            times(0(),Y) -> 0()
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square
            ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(2ndspos) = {2},
            uargs(plus) = {2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
             p(2ndsneg) = [1]                  
             p(2ndspos) = [1] x2 + [0]         
            p(activate) = [1] x1 + [0]         
                p(cons) = [1] x2 + [0]         
                p(from) = [0]                  
             p(n__cons) = [1] x2 + [0]         
             p(n__from) = [0]                  
            p(negrecip) = [1] x1 + [0]         
                  p(pi) = [0]                  
                p(plus) = [1] x2 + [0]         
            p(posrecip) = [1] x1 + [0]         
               p(rcons) = [1] x1 + [1] x2 + [0]
                p(rnil) = [0]                  
                   p(s) = [1] x1 + [9]         
              p(square) = [2] x1 + [0]         
               p(times) = [2] x1 + [0]         
          
          Following rules are strictly oriented:
          2ndsneg(0(),Z) = [1]               
                         > [0]               
                         = rnil()            
          
           times(s(X),Y) = [2] X + [18]      
                         > [2] X + [0]       
                         = plus(Y,times(X,Y))
          
          
          Following rules are (at-least) weakly oriented:
                    2ndspos(0(),Z) =  [1] Z + [0]          
                                   >= [0]                  
                                   =  rnil()               
          
                       activate(X) =  [1] X + [0]          
                                   >= [1] X + [0]          
                                   =  X                    
          
          activate(n__cons(X1,X2)) =  [1] X2 + [0]         
                                   >= [1] X2 + [0]         
                                   =  cons(X1,X2)          
          
              activate(n__from(X)) =  [0]                  
                                   >= [0]                  
                                   =  from(X)              
          
                       cons(X1,X2) =  [1] X2 + [0]         
                                   >= [1] X2 + [0]         
                                   =  n__cons(X1,X2)       
          
                           from(X) =  [0]                  
                                   >= [0]                  
                                   =  cons(X,n__from(s(X)))
          
                           from(X) =  [0]                  
                                   >= [0]                  
                                   =  n__from(X)           
          
                             pi(X) =  [0]                  
                                   >= [0]                  
                                   =  2ndspos(X,from(0())) 
          
                       plus(0(),Y) =  [1] Y + [0]          
                                   >= [1] Y + [0]          
                                   =  Y                    
          
                      plus(s(X),Y) =  [1] Y + [0]          
                                   >= [1] Y + [9]          
                                   =  s(plus(X,Y))         
          
                         square(X) =  [2] X + [0]          
                                   >= [2] X + [0]          
                                   =  times(X,X)           
          
                      times(0(),Y) =  [0]                  
                                   >= [0]                  
                                   =  0()                  
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:5: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            2ndspos(0(),Z) -> rnil()
            pi(X) -> 2ndspos(X,from(0()))
            plus(s(X),Y) -> s(plus(X,Y))
            square(X) -> times(X,X)
        - Weak TRS:
            2ndsneg(0(),Z) -> rnil()
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__from(X)) -> from(X)
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square
            ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(2ndspos) = {2},
            uargs(plus) = {2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [3]                  
             p(2ndsneg) = [4] x1 + [0]         
             p(2ndspos) = [1] x2 + [0]         
            p(activate) = [1] x1 + [4]         
                p(cons) = [2]                  
                p(from) = [1] x1 + [4]         
             p(n__cons) = [0]                  
             p(n__from) = [1] x1 + [0]         
            p(negrecip) = [1]                  
                  p(pi) = [2] x1 + [0]         
                p(plus) = [1] x2 + [6]         
            p(posrecip) = [1]                  
               p(rcons) = [1] x1 + [1] x2 + [2]
                p(rnil) = [0]                  
                   p(s) = [1] x1 + [5]         
              p(square) = [4] x1 + [4]         
               p(times) = [3] x1 + [1] x2 + [0]
          
          Following rules are strictly oriented:
          square(X) = [4] X + [4]
                    > [4] X + [0]
                    = times(X,X) 
          
          
          Following rules are (at-least) weakly oriented:
                    2ndsneg(0(),Z) =  [12]                 
                                   >= [0]                  
                                   =  rnil()               
          
                    2ndspos(0(),Z) =  [1] Z + [0]          
                                   >= [0]                  
                                   =  rnil()               
          
                       activate(X) =  [1] X + [4]          
                                   >= [1] X + [0]          
                                   =  X                    
          
          activate(n__cons(X1,X2)) =  [4]                  
                                   >= [2]                  
                                   =  cons(X1,X2)          
          
              activate(n__from(X)) =  [1] X + [4]          
                                   >= [1] X + [4]          
                                   =  from(X)              
          
                       cons(X1,X2) =  [2]                  
                                   >= [0]                  
                                   =  n__cons(X1,X2)       
          
                           from(X) =  [1] X + [4]          
                                   >= [2]                  
                                   =  cons(X,n__from(s(X)))
          
                           from(X) =  [1] X + [4]          
                                   >= [1] X + [0]          
                                   =  n__from(X)           
          
                             pi(X) =  [2] X + [0]          
                                   >= [7]                  
                                   =  2ndspos(X,from(0())) 
          
                       plus(0(),Y) =  [1] Y + [6]          
                                   >= [1] Y + [0]          
                                   =  Y                    
          
                      plus(s(X),Y) =  [1] Y + [6]          
                                   >= [1] Y + [11]         
                                   =  s(plus(X,Y))         
          
                      times(0(),Y) =  [1] Y + [9]          
                                   >= [3]                  
                                   =  0()                  
          
                     times(s(X),Y) =  [3] X + [1] Y + [15] 
                                   >= [3] X + [1] Y + [6]  
                                   =  plus(Y,times(X,Y))   
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:6: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            2ndspos(0(),Z) -> rnil()
            pi(X) -> 2ndspos(X,from(0()))
            plus(s(X),Y) -> s(plus(X,Y))
        - Weak TRS:
            2ndsneg(0(),Z) -> rnil()
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__from(X)) -> from(X)
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square
            ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(2ndspos) = {2},
            uargs(plus) = {2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [4]                  
             p(2ndsneg) = [1] x1 + [7]         
             p(2ndspos) = [1] x2 + [1]         
            p(activate) = [2] x1 + [4]         
                p(cons) = [1] x2 + [0]         
                p(from) = [1]                  
             p(n__cons) = [1] x2 + [0]         
             p(n__from) = [1]                  
            p(negrecip) = [1] x1 + [0]         
                  p(pi) = [2]                  
                p(plus) = [1] x2 + [0]         
            p(posrecip) = [1] x1 + [0]         
               p(rcons) = [1] x1 + [1] x2 + [0]
                p(rnil) = [0]                  
                   p(s) = [1] x1 + [1]         
              p(square) = [7] x1 + [4]         
               p(times) = [2] x1 + [4] x2 + [2]
          
          Following rules are strictly oriented:
          2ndspos(0(),Z) = [1] Z + [1]
                         > [0]        
                         = rnil()     
          
          
          Following rules are (at-least) weakly oriented:
                    2ndsneg(0(),Z) =  [11]                 
                                   >= [0]                  
                                   =  rnil()               
          
                       activate(X) =  [2] X + [4]          
                                   >= [1] X + [0]          
                                   =  X                    
          
          activate(n__cons(X1,X2)) =  [2] X2 + [4]         
                                   >= [1] X2 + [0]         
                                   =  cons(X1,X2)          
          
              activate(n__from(X)) =  [6]                  
                                   >= [1]                  
                                   =  from(X)              
          
                       cons(X1,X2) =  [1] X2 + [0]         
                                   >= [1] X2 + [0]         
                                   =  n__cons(X1,X2)       
          
                           from(X) =  [1]                  
                                   >= [1]                  
                                   =  cons(X,n__from(s(X)))
          
                           from(X) =  [1]                  
                                   >= [1]                  
                                   =  n__from(X)           
          
                             pi(X) =  [2]                  
                                   >= [2]                  
                                   =  2ndspos(X,from(0())) 
          
                       plus(0(),Y) =  [1] Y + [0]          
                                   >= [1] Y + [0]          
                                   =  Y                    
          
                      plus(s(X),Y) =  [1] Y + [0]          
                                   >= [1] Y + [1]          
                                   =  s(plus(X,Y))         
          
                         square(X) =  [7] X + [4]          
                                   >= [6] X + [2]          
                                   =  times(X,X)           
          
                      times(0(),Y) =  [4] Y + [10]         
                                   >= [4]                  
                                   =  0()                  
          
                     times(s(X),Y) =  [2] X + [4] Y + [4]  
                                   >= [2] X + [4] Y + [2]  
                                   =  plus(Y,times(X,Y))   
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:7: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            pi(X) -> 2ndspos(X,from(0()))
            plus(s(X),Y) -> s(plus(X,Y))
        - Weak TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndspos(0(),Z) -> rnil()
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__from(X)) -> from(X)
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square
            ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(2ndspos) = {2},
            uargs(plus) = {2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [1]                  
             p(2ndsneg) = [2] x1 + [0]         
             p(2ndspos) = [1] x2 + [1]         
            p(activate) = [2] x1 + [6]         
                p(cons) = [1] x1 + [0]         
                p(from) = [1] x1 + [0]         
             p(n__cons) = [1] x1 + [0]         
             p(n__from) = [1] x1 + [0]         
            p(negrecip) = [1] x1 + [0]         
                  p(pi) = [3]                  
                p(plus) = [1] x2 + [0]         
            p(posrecip) = [1] x1 + [0]         
               p(rcons) = [1] x1 + [1] x2 + [0]
                p(rnil) = [0]                  
                   p(s) = [1] x1 + [1]         
              p(square) = [5] x1 + [1]         
               p(times) = [4] x2 + [1]         
          
          Following rules are strictly oriented:
          pi(X) = [3]                 
                > [2]                 
                = 2ndspos(X,from(0()))
          
          
          Following rules are (at-least) weakly oriented:
                    2ndsneg(0(),Z) =  [2]                  
                                   >= [0]                  
                                   =  rnil()               
          
                    2ndspos(0(),Z) =  [1] Z + [1]          
                                   >= [0]                  
                                   =  rnil()               
          
                       activate(X) =  [2] X + [6]          
                                   >= [1] X + [0]          
                                   =  X                    
          
          activate(n__cons(X1,X2)) =  [2] X1 + [6]         
                                   >= [1] X1 + [0]         
                                   =  cons(X1,X2)          
          
              activate(n__from(X)) =  [2] X + [6]          
                                   >= [1] X + [0]          
                                   =  from(X)              
          
                       cons(X1,X2) =  [1] X1 + [0]         
                                   >= [1] X1 + [0]         
                                   =  n__cons(X1,X2)       
          
                           from(X) =  [1] X + [0]          
                                   >= [1] X + [0]          
                                   =  cons(X,n__from(s(X)))
          
                           from(X) =  [1] X + [0]          
                                   >= [1] X + [0]          
                                   =  n__from(X)           
          
                       plus(0(),Y) =  [1] Y + [0]          
                                   >= [1] Y + [0]          
                                   =  Y                    
          
                      plus(s(X),Y) =  [1] Y + [0]          
                                   >= [1] Y + [1]          
                                   =  s(plus(X,Y))         
          
                         square(X) =  [5] X + [1]          
                                   >= [4] X + [1]          
                                   =  times(X,X)           
          
                      times(0(),Y) =  [4] Y + [1]          
                                   >= [1]                  
                                   =  0()                  
          
                     times(s(X),Y) =  [4] Y + [1]          
                                   >= [4] Y + [1]          
                                   =  plus(Y,times(X,Y))   
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:8: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            plus(s(X),Y) -> s(plus(X,Y))
        - Weak TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndspos(0(),Z) -> rnil()
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__from(X)) -> from(X)
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square
            ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(2ndspos) = {2},
          uargs(plus) = {2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {2ndsneg,2ndspos,activate,cons,from,pi,plus,square,times}
        TcT has computed the following interpretation:
                 p(0) = 0                
           p(2ndsneg) = x1*x2 + 3*x2     
           p(2ndspos) = x2               
          p(activate) = 1 + 4*x1 + 4*x1^2
              p(cons) = 0                
              p(from) = 0                
           p(n__cons) = 0                
           p(n__from) = 0                
          p(negrecip) = 1                
                p(pi) = 3 + x1           
              p(plus) = 2*x1 + x2        
          p(posrecip) = 1                
             p(rcons) = 0                
              p(rnil) = 0                
                 p(s) = 1 + x1           
            p(square) = 2*x1 + 4*x1^2    
             p(times) = 2*x1*x2          
        
        Following rules are strictly oriented:
        plus(s(X),Y) = 2 + 2*X + Y 
                     > 1 + 2*X + Y 
                     = s(plus(X,Y))
        
        
        Following rules are (at-least) weakly oriented:
                  2ndsneg(0(),Z) =  3*Z                  
                                 >= 0                    
                                 =  rnil()               
        
                  2ndspos(0(),Z) =  Z                    
                                 >= 0                    
                                 =  rnil()               
        
                     activate(X) =  1 + 4*X + 4*X^2      
                                 >= X                    
                                 =  X                    
        
        activate(n__cons(X1,X2)) =  1                    
                                 >= 0                    
                                 =  cons(X1,X2)          
        
            activate(n__from(X)) =  1                    
                                 >= 0                    
                                 =  from(X)              
        
                     cons(X1,X2) =  0                    
                                 >= 0                    
                                 =  n__cons(X1,X2)       
        
                         from(X) =  0                    
                                 >= 0                    
                                 =  cons(X,n__from(s(X)))
        
                         from(X) =  0                    
                                 >= 0                    
                                 =  n__from(X)           
        
                           pi(X) =  3 + X                
                                 >= 0                    
                                 =  2ndspos(X,from(0())) 
        
                     plus(0(),Y) =  Y                    
                                 >= Y                    
                                 =  Y                    
        
                       square(X) =  2*X + 4*X^2          
                                 >= 2*X^2                
                                 =  times(X,X)           
        
                    times(0(),Y) =  0                    
                                 >= 0                    
                                 =  0()                  
        
                   times(s(X),Y) =  2*X*Y + 2*Y          
                                 >= 2*X*Y + 2*Y          
                                 =  plus(Y,times(X,Y))   
        
** Step 1.b:9: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndspos(0(),Z) -> rnil()
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__from(X)) -> from(X)
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,square
            ,times} and constructors {0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))