* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z)))
            2ndspos(0(),Z) -> rnil()
            2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z)))
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            s(X) -> n__s(X)
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,s,square
            ,times} and constructors {0,n__cons,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z)))
            2ndspos(0(),Z) -> rnil()
            2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z)))
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            s(X) -> n__s(X)
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,s,square
            ,times} and constructors {0,n__cons,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__cons(x,y)} =
            activate(n__cons(x,y)) ->^+ cons(activate(x),y)
              = C[activate(x) = activate(x){}]

** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z)))
            2ndspos(0(),Z) -> rnil()
            2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z)))
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            s(X) -> n__s(X)
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,s,square
            ,times} and constructors {0,n__cons,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z)))
          2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z)))
          plus(s(X),Y) -> s(plus(X,Y))
          times(s(X),Y) -> plus(Y,times(X,Y))
        All above mentioned rules can be savely removed.
** Step 1.b:2: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndspos(0(),Z) -> rnil()
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            s(X) -> n__s(X)
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,s,square
            ,times} and constructors {0,n__cons,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(2ndspos) = {2},
            uargs(cons) = {1},
            uargs(from) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
             p(2ndsneg) = [0]                  
             p(2ndspos) = [1] x2 + [0]         
            p(activate) = [2] x1 + [0]         
                p(cons) = [1] x1 + [0]         
                p(from) = [1] x1 + [0]         
             p(n__cons) = [1] x1 + [1]         
             p(n__from) = [1] x1 + [0]         
                p(n__s) = [1] x1 + [0]         
            p(negrecip) = [1] x1 + [0]         
                  p(pi) = [0]                  
                p(plus) = [2] x2 + [0]         
            p(posrecip) = [1] x1 + [0]         
               p(rcons) = [1] x1 + [1] x2 + [0]
                p(rnil) = [0]                  
                   p(s) = [1] x1 + [0]         
              p(square) = [0]                  
               p(times) = [1]                  
          
          Following rules are strictly oriented:
          activate(n__cons(X1,X2)) = [2] X1 + [2]         
                                   > [2] X1 + [0]         
                                   = cons(activate(X1),X2)
          
                      times(0(),Y) = [1]                  
                                   > [0]                  
                                   = 0()                  
          
          
          Following rules are (at-least) weakly oriented:
                2ndsneg(0(),Z) =  [0]                     
                               >= [0]                     
                               =  rnil()                  
          
                2ndspos(0(),Z) =  [1] Z + [0]             
                               >= [0]                     
                               =  rnil()                  
          
                   activate(X) =  [2] X + [0]             
                               >= [1] X + [0]             
                               =  X                       
          
          activate(n__from(X)) =  [2] X + [0]             
                               >= [2] X + [0]             
                               =  from(activate(X))       
          
             activate(n__s(X)) =  [2] X + [0]             
                               >= [2] X + [0]             
                               =  s(activate(X))          
          
                   cons(X1,X2) =  [1] X1 + [0]            
                               >= [1] X1 + [1]            
                               =  n__cons(X1,X2)          
          
                       from(X) =  [1] X + [0]             
                               >= [1] X + [0]             
                               =  cons(X,n__from(n__s(X)))
          
                       from(X) =  [1] X + [0]             
                               >= [1] X + [0]             
                               =  n__from(X)              
          
                         pi(X) =  [0]                     
                               >= [0]                     
                               =  2ndspos(X,from(0()))    
          
                   plus(0(),Y) =  [2] Y + [0]             
                               >= [1] Y + [0]             
                               =  Y                       
          
                          s(X) =  [1] X + [0]             
                               >= [1] X + [0]             
                               =  n__s(X)                 
          
                     square(X) =  [0]                     
                               >= [1]                     
                               =  times(X,X)              
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:3: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndspos(0(),Z) -> rnil()
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            s(X) -> n__s(X)
            square(X) -> times(X,X)
        - Weak TRS:
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            times(0(),Y) -> 0()
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,s,square
            ,times} and constructors {0,n__cons,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(2ndspos) = {2},
            uargs(cons) = {1},
            uargs(from) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [1]                  
             p(2ndsneg) = [0]                  
             p(2ndspos) = [1] x2 + [0]         
            p(activate) = [10] x1 + [0]        
                p(cons) = [1] x1 + [0]         
                p(from) = [1] x1 + [3]         
             p(n__cons) = [1] x1 + [0]         
             p(n__from) = [1] x1 + [0]         
                p(n__s) = [1] x1 + [0]         
            p(negrecip) = [1] x1 + [0]         
                  p(pi) = [0]                  
                p(plus) = [2] x2 + [0]         
            p(posrecip) = [1] x1 + [0]         
               p(rcons) = [1] x1 + [1] x2 + [0]
                p(rnil) = [0]                  
                   p(s) = [1] x1 + [0]         
              p(square) = [1] x1 + [1]         
               p(times) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
            from(X) = [1] X + [3]             
                    > [1] X + [0]             
                    = cons(X,n__from(n__s(X)))
          
            from(X) = [1] X + [3]             
                    > [1] X + [0]             
                    = n__from(X)              
          
          square(X) = [1] X + [1]             
                    > [1] X + [0]             
                    = times(X,X)              
          
          
          Following rules are (at-least) weakly oriented:
                    2ndsneg(0(),Z) =  [0]                  
                                   >= [0]                  
                                   =  rnil()               
          
                    2ndspos(0(),Z) =  [1] Z + [0]          
                                   >= [0]                  
                                   =  rnil()               
          
                       activate(X) =  [10] X + [0]         
                                   >= [1] X + [0]          
                                   =  X                    
          
          activate(n__cons(X1,X2)) =  [10] X1 + [0]        
                                   >= [10] X1 + [0]        
                                   =  cons(activate(X1),X2)
          
              activate(n__from(X)) =  [10] X + [0]         
                                   >= [10] X + [3]         
                                   =  from(activate(X))    
          
                 activate(n__s(X)) =  [10] X + [0]         
                                   >= [10] X + [0]         
                                   =  s(activate(X))       
          
                       cons(X1,X2) =  [1] X1 + [0]         
                                   >= [1] X1 + [0]         
                                   =  n__cons(X1,X2)       
          
                             pi(X) =  [0]                  
                                   >= [4]                  
                                   =  2ndspos(X,from(0())) 
          
                       plus(0(),Y) =  [2] Y + [0]          
                                   >= [1] Y + [0]          
                                   =  Y                    
          
                              s(X) =  [1] X + [0]          
                                   >= [1] X + [0]          
                                   =  n__s(X)              
          
                      times(0(),Y) =  [1]                  
                                   >= [1]                  
                                   =  0()                  
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:4: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndspos(0(),Z) -> rnil()
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            cons(X1,X2) -> n__cons(X1,X2)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            s(X) -> n__s(X)
        - Weak TRS:
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,s,square
            ,times} and constructors {0,n__cons,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(2ndspos) = {2},
            uargs(cons) = {1},
            uargs(from) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
             p(2ndsneg) = [0]                  
             p(2ndspos) = [1] x2 + [0]         
            p(activate) = [10] x1 + [0]        
                p(cons) = [1] x1 + [0]         
                p(from) = [1] x1 + [0]         
             p(n__cons) = [1] x1 + [0]         
             p(n__from) = [1] x1 + [0]         
                p(n__s) = [1] x1 + [0]         
            p(negrecip) = [1] x1 + [0]         
                  p(pi) = [0]                  
                p(plus) = [2] x2 + [0]         
            p(posrecip) = [1] x1 + [0]         
               p(rcons) = [1] x1 + [1] x2 + [0]
                p(rnil) = [0]                  
                   p(s) = [1] x1 + [1]         
              p(square) = [0]                  
               p(times) = [0]                  
          
          Following rules are strictly oriented:
          s(X) = [1] X + [1]
               > [1] X + [0]
               = n__s(X)    
          
          
          Following rules are (at-least) weakly oriented:
                    2ndsneg(0(),Z) =  [0]                     
                                   >= [0]                     
                                   =  rnil()                  
          
                    2ndspos(0(),Z) =  [1] Z + [0]             
                                   >= [0]                     
                                   =  rnil()                  
          
                       activate(X) =  [10] X + [0]            
                                   >= [1] X + [0]             
                                   =  X                       
          
          activate(n__cons(X1,X2)) =  [10] X1 + [0]           
                                   >= [10] X1 + [0]           
                                   =  cons(activate(X1),X2)   
          
              activate(n__from(X)) =  [10] X + [0]            
                                   >= [10] X + [0]            
                                   =  from(activate(X))       
          
                 activate(n__s(X)) =  [10] X + [0]            
                                   >= [10] X + [1]            
                                   =  s(activate(X))          
          
                       cons(X1,X2) =  [1] X1 + [0]            
                                   >= [1] X1 + [0]            
                                   =  n__cons(X1,X2)          
          
                           from(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  cons(X,n__from(n__s(X)))
          
                           from(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  n__from(X)              
          
                             pi(X) =  [0]                     
                                   >= [0]                     
                                   =  2ndspos(X,from(0()))    
          
                       plus(0(),Y) =  [2] Y + [0]             
                                   >= [1] Y + [0]             
                                   =  Y                       
          
                         square(X) =  [0]                     
                                   >= [0]                     
                                   =  times(X,X)              
          
                      times(0(),Y) =  [0]                     
                                   >= [0]                     
                                   =  0()                     
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:5: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndspos(0(),Z) -> rnil()
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            cons(X1,X2) -> n__cons(X1,X2)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
        - Weak TRS:
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,s,square
            ,times} and constructors {0,n__cons,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(2ndspos) = {2},
            uargs(cons) = {1},
            uargs(from) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [2]                  
             p(2ndsneg) = [0]                  
             p(2ndspos) = [2] x1 + [1] x2 + [0]
            p(activate) = [8] x1 + [0]         
                p(cons) = [1] x1 + [6]         
                p(from) = [1] x1 + [6]         
             p(n__cons) = [1] x1 + [1]         
             p(n__from) = [1] x1 + [0]         
                p(n__s) = [1] x1 + [1]         
            p(negrecip) = [1] x1 + [0]         
                  p(pi) = [2] x1 + [0]         
                p(plus) = [9] x1 + [2] x2 + [0]
            p(posrecip) = [1] x1 + [0]         
               p(rcons) = [1] x1 + [1] x2 + [0]
                p(rnil) = [0]                  
                   p(s) = [1] x1 + [1]         
              p(square) = [2]                  
               p(times) = [2]                  
          
          Following rules are strictly oriented:
             2ndspos(0(),Z) = [1] Z + [4]   
                            > [0]           
                            = rnil()        
          
          activate(n__s(X)) = [8] X + [8]   
                            > [8] X + [1]   
                            = s(activate(X))
          
                cons(X1,X2) = [1] X1 + [6]  
                            > [1] X1 + [1]  
                            = n__cons(X1,X2)
          
                plus(0(),Y) = [2] Y + [18]  
                            > [1] Y + [0]   
                            = Y             
          
          
          Following rules are (at-least) weakly oriented:
                    2ndsneg(0(),Z) =  [0]                     
                                   >= [0]                     
                                   =  rnil()                  
          
                       activate(X) =  [8] X + [0]             
                                   >= [1] X + [0]             
                                   =  X                       
          
          activate(n__cons(X1,X2)) =  [8] X1 + [8]            
                                   >= [8] X1 + [6]            
                                   =  cons(activate(X1),X2)   
          
              activate(n__from(X)) =  [8] X + [0]             
                                   >= [8] X + [6]             
                                   =  from(activate(X))       
          
                           from(X) =  [1] X + [6]             
                                   >= [1] X + [6]             
                                   =  cons(X,n__from(n__s(X)))
          
                           from(X) =  [1] X + [6]             
                                   >= [1] X + [0]             
                                   =  n__from(X)              
          
                             pi(X) =  [2] X + [0]             
                                   >= [2] X + [8]             
                                   =  2ndspos(X,from(0()))    
          
                              s(X) =  [1] X + [1]             
                                   >= [1] X + [1]             
                                   =  n__s(X)                 
          
                         square(X) =  [2]                     
                                   >= [2]                     
                                   =  times(X,X)              
          
                      times(0(),Y) =  [2]                     
                                   >= [2]                     
                                   =  0()                     
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:6: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            pi(X) -> 2ndspos(X,from(0()))
        - Weak TRS:
            2ndspos(0(),Z) -> rnil()
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            activate(n__s(X)) -> s(activate(X))
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            s(X) -> n__s(X)
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,s,square
            ,times} and constructors {0,n__cons,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(2ndspos) = {2},
            uargs(cons) = {1},
            uargs(from) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]         
             p(2ndsneg) = [1]         
             p(2ndspos) = [1] x2 + [0]
            p(activate) = [1] x1 + [0]
                p(cons) = [1] x1 + [0]
                p(from) = [1] x1 + [0]
             p(n__cons) = [1] x1 + [0]
             p(n__from) = [1] x1 + [0]
                p(n__s) = [1] x1 + [4]
            p(negrecip) = [1] x1 + [0]
                  p(pi) = [2]         
                p(plus) = [1] x2 + [0]
            p(posrecip) = [1]         
               p(rcons) = [1] x1 + [8]
                p(rnil) = [0]         
                   p(s) = [1] x1 + [4]
              p(square) = [1] x1 + [2]
               p(times) = [2]         
          
          Following rules are strictly oriented:
          2ndsneg(0(),Z) = [1]                 
                         > [0]                 
                         = rnil()              
          
                   pi(X) = [2]                 
                         > [0]                 
                         = 2ndspos(X,from(0()))
          
          
          Following rules are (at-least) weakly oriented:
                    2ndspos(0(),Z) =  [1] Z + [0]             
                                   >= [0]                     
                                   =  rnil()                  
          
                       activate(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  X                       
          
          activate(n__cons(X1,X2)) =  [1] X1 + [0]            
                                   >= [1] X1 + [0]            
                                   =  cons(activate(X1),X2)   
          
              activate(n__from(X)) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  from(activate(X))       
          
                 activate(n__s(X)) =  [1] X + [4]             
                                   >= [1] X + [4]             
                                   =  s(activate(X))          
          
                       cons(X1,X2) =  [1] X1 + [0]            
                                   >= [1] X1 + [0]            
                                   =  n__cons(X1,X2)          
          
                           from(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  cons(X,n__from(n__s(X)))
          
                           from(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  n__from(X)              
          
                       plus(0(),Y) =  [1] Y + [0]             
                                   >= [1] Y + [0]             
                                   =  Y                       
          
                              s(X) =  [1] X + [4]             
                                   >= [1] X + [4]             
                                   =  n__s(X)                 
          
                         square(X) =  [1] X + [2]             
                                   >= [2]                     
                                   =  times(X,X)              
          
                      times(0(),Y) =  [2]                     
                                   >= [0]                     
                                   =  0()                     
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:7: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
        - Weak TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndspos(0(),Z) -> rnil()
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            activate(n__s(X)) -> s(activate(X))
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            s(X) -> n__s(X)
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,s,square
            ,times} and constructors {0,n__cons,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(2ndspos) = {2},
            uargs(cons) = {1},
            uargs(from) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]          
             p(2ndsneg) = [0]          
             p(2ndspos) = [1] x2 + [6] 
            p(activate) = [8] x1 + [6] 
                p(cons) = [1] x1 + [0] 
                p(from) = [1] x1 + [9] 
             p(n__cons) = [1] x1 + [0] 
             p(n__from) = [1] x1 + [0] 
                p(n__s) = [1] x1 + [0] 
            p(negrecip) = [0]          
                  p(pi) = [1] x1 + [15]
                p(plus) = [2] x2 + [4] 
            p(posrecip) = [1] x1 + [4] 
               p(rcons) = [0]          
                p(rnil) = [0]          
                   p(s) = [1] x1 + [0] 
              p(square) = [8] x1 + [1] 
               p(times) = [0]          
          
          Following rules are strictly oriented:
          activate(X) = [8] X + [6]
                      > [1] X + [0]
                      = X          
          
          
          Following rules are (at-least) weakly oriented:
                    2ndsneg(0(),Z) =  [0]                     
                                   >= [0]                     
                                   =  rnil()                  
          
                    2ndspos(0(),Z) =  [1] Z + [6]             
                                   >= [0]                     
                                   =  rnil()                  
          
          activate(n__cons(X1,X2)) =  [8] X1 + [6]            
                                   >= [8] X1 + [6]            
                                   =  cons(activate(X1),X2)   
          
              activate(n__from(X)) =  [8] X + [6]             
                                   >= [8] X + [15]            
                                   =  from(activate(X))       
          
                 activate(n__s(X)) =  [8] X + [6]             
                                   >= [8] X + [6]             
                                   =  s(activate(X))          
          
                       cons(X1,X2) =  [1] X1 + [0]            
                                   >= [1] X1 + [0]            
                                   =  n__cons(X1,X2)          
          
                           from(X) =  [1] X + [9]             
                                   >= [1] X + [0]             
                                   =  cons(X,n__from(n__s(X)))
          
                           from(X) =  [1] X + [9]             
                                   >= [1] X + [0]             
                                   =  n__from(X)              
          
                             pi(X) =  [1] X + [15]            
                                   >= [15]                    
                                   =  2ndspos(X,from(0()))    
          
                       plus(0(),Y) =  [2] Y + [4]             
                                   >= [1] Y + [0]             
                                   =  Y                       
          
                              s(X) =  [1] X + [0]             
                                   >= [1] X + [0]             
                                   =  n__s(X)                 
          
                         square(X) =  [8] X + [1]             
                                   >= [0]                     
                                   =  times(X,X)              
          
                      times(0(),Y) =  [0]                     
                                   >= [0]                     
                                   =  0()                     
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:8: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(n__from(X)) -> from(activate(X))
        - Weak TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndspos(0(),Z) -> rnil()
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            activate(n__s(X)) -> s(activate(X))
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            s(X) -> n__s(X)
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,s,square
            ,times} and constructors {0,n__cons,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(2ndspos) = {2},
            uargs(cons) = {1},
            uargs(from) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [7]                  
             p(2ndsneg) = [3] x1 + [3]         
             p(2ndspos) = [1] x1 + [1] x2 + [4]
            p(activate) = [8] x1 + [14]        
                p(cons) = [1] x1 + [2]         
                p(from) = [1] x1 + [2]         
             p(n__cons) = [1] x1 + [2]         
             p(n__from) = [1] x1 + [2]         
                p(n__s) = [1] x1 + [1]         
            p(negrecip) = [1]                  
                  p(pi) = [6] x1 + [13]        
                p(plus) = [1] x1 + [4] x2 + [0]
            p(posrecip) = [1] x1 + [1]         
               p(rcons) = [1]                  
                p(rnil) = [2]                  
                   p(s) = [1] x1 + [8]         
              p(square) = [9] x1 + [0]         
               p(times) = [3] x1 + [5] x2 + [0]
          
          Following rules are strictly oriented:
          activate(n__from(X)) = [8] X + [30]     
                               > [8] X + [16]     
                               = from(activate(X))
          
          
          Following rules are (at-least) weakly oriented:
                    2ndsneg(0(),Z) =  [24]                    
                                   >= [2]                     
                                   =  rnil()                  
          
                    2ndspos(0(),Z) =  [1] Z + [11]            
                                   >= [2]                     
                                   =  rnil()                  
          
                       activate(X) =  [8] X + [14]            
                                   >= [1] X + [0]             
                                   =  X                       
          
          activate(n__cons(X1,X2)) =  [8] X1 + [30]           
                                   >= [8] X1 + [16]           
                                   =  cons(activate(X1),X2)   
          
                 activate(n__s(X)) =  [8] X + [22]            
                                   >= [8] X + [22]            
                                   =  s(activate(X))          
          
                       cons(X1,X2) =  [1] X1 + [2]            
                                   >= [1] X1 + [2]            
                                   =  n__cons(X1,X2)          
          
                           from(X) =  [1] X + [2]             
                                   >= [1] X + [2]             
                                   =  cons(X,n__from(n__s(X)))
          
                           from(X) =  [1] X + [2]             
                                   >= [1] X + [2]             
                                   =  n__from(X)              
          
                             pi(X) =  [6] X + [13]            
                                   >= [1] X + [13]            
                                   =  2ndspos(X,from(0()))    
          
                       plus(0(),Y) =  [4] Y + [7]             
                                   >= [1] Y + [0]             
                                   =  Y                       
          
                              s(X) =  [1] X + [8]             
                                   >= [1] X + [1]             
                                   =  n__s(X)                 
          
                         square(X) =  [9] X + [0]             
                                   >= [8] X + [0]             
                                   =  times(X,X)              
          
                      times(0(),Y) =  [5] Y + [21]            
                                   >= [7]                     
                                   =  0()                     
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:9: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndspos(0(),Z) -> rnil()
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            s(X) -> n__s(X)
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,n__cons/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,cons,from,pi,plus,s,square
            ,times} and constructors {0,n__cons,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))