* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(activate(X)) f(X) -> n__f(X) f(f(a())) -> f(g(n__f(n__a()))) - Signature: {a/0,activate/1,f/1} / {g/1,n__a/0,n__f/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,activate,f} and constructors {g,n__a,n__f} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(activate(X)) f(X) -> n__f(X) f(f(a())) -> f(g(n__f(n__a()))) - Signature: {a/0,activate/1,f/1} / {g/1,n__a/0,n__f/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,activate,f} and constructors {g,n__a,n__f} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: activate(x){x -> n__f(x)} = activate(n__f(x)) ->^+ f(activate(x)) = C[activate(x) = activate(x){}] ** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(activate(X)) f(X) -> n__f(X) f(f(a())) -> f(g(n__f(n__a()))) - Signature: {a/0,activate/1,f/1} / {g/1,n__a/0,n__f/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,activate,f} and constructors {g,n__a,n__f} + Applied Processor: InnermostRuleRemoval + Details: Arguments of following rules are not normal-forms. f(f(a())) -> f(g(n__f(n__a()))) All above mentioned rules can be savely removed. ** Step 1.b:2: Bounds WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(activate(X)) f(X) -> n__f(X) - Signature: {a/0,activate/1,f/1} / {g/1,n__a/0,n__f/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,activate,f} and constructors {g,n__a,n__f} + Applied Processor: Bounds {initialAutomaton = minimal, enrichment = match} + Details: The problem is match-bounded by 2. The enriched problem is compatible with follwoing automaton. a_0() -> 1 a_1() -> 1 a_1() -> 3 activate_0(2) -> 1 activate_1(2) -> 3 f_0(2) -> 1 f_1(3) -> 1 f_1(3) -> 3 g_0(2) -> 1 g_0(2) -> 2 g_0(2) -> 3 n__a_0() -> 1 n__a_0() -> 2 n__a_0() -> 3 n__a_1() -> 1 n__a_2() -> 1 n__a_2() -> 3 n__f_0(2) -> 1 n__f_0(2) -> 2 n__f_0(2) -> 3 n__f_1(2) -> 1 n__f_2(3) -> 1 n__f_2(3) -> 3 2 -> 1 2 -> 3 ** Step 1.b:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(activate(X)) f(X) -> n__f(X) - Signature: {a/0,activate/1,f/1} / {g/1,n__a/0,n__f/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,activate,f} and constructors {g,n__a,n__f} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))