* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            a() -> n__a()
            activate(X) -> X
            activate(n__a()) -> a()
            activate(n__f(X)) -> f(activate(X))
            f(X) -> n__f(X)
            f(f(a())) -> f(g(n__f(n__a())))
        - Signature:
            {a/0,activate/1,f/1} / {g/1,n__a/0,n__f/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a,activate,f} and constructors {g,n__a,n__f}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            a() -> n__a()
            activate(X) -> X
            activate(n__a()) -> a()
            activate(n__f(X)) -> f(activate(X))
            f(X) -> n__f(X)
            f(f(a())) -> f(g(n__f(n__a())))
        - Signature:
            {a/0,activate/1,f/1} / {g/1,n__a/0,n__f/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a,activate,f} and constructors {g,n__a,n__f}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__f(x)} =
            activate(n__f(x)) ->^+ f(activate(x))
              = C[activate(x) = activate(x){}]

** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            a() -> n__a()
            activate(X) -> X
            activate(n__a()) -> a()
            activate(n__f(X)) -> f(activate(X))
            f(X) -> n__f(X)
            f(f(a())) -> f(g(n__f(n__a())))
        - Signature:
            {a/0,activate/1,f/1} / {g/1,n__a/0,n__f/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a,activate,f} and constructors {g,n__a,n__f}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          f(f(a())) -> f(g(n__f(n__a())))
        All above mentioned rules can be savely removed.
** Step 1.b:2: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            a() -> n__a()
            activate(X) -> X
            activate(n__a()) -> a()
            activate(n__f(X)) -> f(activate(X))
            f(X) -> n__f(X)
        - Signature:
            {a/0,activate/1,f/1} / {g/1,n__a/0,n__f/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a,activate,f} and constructors {g,n__a,n__f}
    + Applied Processor:
        Bounds {initialAutomaton = minimal, enrichment = match}
    + Details:
        The problem is match-bounded by 2.
        The enriched problem is compatible with follwoing automaton.
          a_0() -> 1
          a_1() -> 1
          a_1() -> 3
          activate_0(2) -> 1
          activate_1(2) -> 3
          f_0(2) -> 1
          f_1(3) -> 1
          f_1(3) -> 3
          g_0(2) -> 1
          g_0(2) -> 2
          g_0(2) -> 3
          n__a_0() -> 1
          n__a_0() -> 2
          n__a_0() -> 3
          n__a_1() -> 1
          n__a_2() -> 1
          n__a_2() -> 3
          n__f_0(2) -> 1
          n__f_0(2) -> 2
          n__f_0(2) -> 3
          n__f_1(2) -> 1
          n__f_2(3) -> 1
          n__f_2(3) -> 3
          2 -> 1
          2 -> 3
** Step 1.b:3: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            a() -> n__a()
            activate(X) -> X
            activate(n__a()) -> a()
            activate(n__f(X)) -> f(activate(X))
            f(X) -> n__f(X)
        - Signature:
            {a/0,activate/1,f/1} / {g/1,n__a/0,n__f/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a,activate,f} and constructors {g,n__a,n__f}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))