* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
activate(X) -> X
activate(n__add(X1,X2)) -> add(activate(X1),X2)
activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
activate(n__from(X)) -> from(X)
activate(n__s(X)) -> s(X)
add(X1,X2) -> n__add(X1,X2)
add(0(),X) -> activate(X)
add(s(X),Y) -> s(n__add(activate(X),activate(Y)))
and(false(),Y) -> false()
and(true(),X) -> activate(X)
first(X1,X2) -> n__first(X1,X2)
first(0(),X) -> nil()
first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z)))
from(X) -> cons(activate(X),n__from(n__s(activate(X))))
from(X) -> n__from(X)
if(false(),X,Y) -> activate(Y)
if(true(),X,Y) -> activate(X)
s(X) -> n__s(X)
- Signature:
{activate/1,add/2,and/2,first/2,from/1,if/3,s/1} / {0/0,cons/2,false/0,n__add/2,n__first/2,n__from/1,n__s/1
,nil/0,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,add,and,first,from,if,s} and constructors {0
,cons,false,n__add,n__first,n__from,n__s,nil,true}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
activate(X) -> X
activate(n__add(X1,X2)) -> add(activate(X1),X2)
activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
activate(n__from(X)) -> from(X)
activate(n__s(X)) -> s(X)
add(X1,X2) -> n__add(X1,X2)
add(0(),X) -> activate(X)
add(s(X),Y) -> s(n__add(activate(X),activate(Y)))
and(false(),Y) -> false()
and(true(),X) -> activate(X)
first(X1,X2) -> n__first(X1,X2)
first(0(),X) -> nil()
first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z)))
from(X) -> cons(activate(X),n__from(n__s(activate(X))))
from(X) -> n__from(X)
if(false(),X,Y) -> activate(Y)
if(true(),X,Y) -> activate(X)
s(X) -> n__s(X)
- Signature:
{activate/1,add/2,and/2,first/2,from/1,if/3,s/1} / {0/0,cons/2,false/0,n__add/2,n__first/2,n__from/1,n__s/1
,nil/0,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,add,and,first,from,if,s} and constructors {0
,cons,false,n__add,n__first,n__from,n__s,nil,true}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
activate(x){x -> n__add(x,y)} =
activate(n__add(x,y)) ->^+ add(activate(x),y)
= C[activate(x) = activate(x){}]
WORST_CASE(Omega(n^1),?)