* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
active(add(X1,X2)) -> add(active(X1),X2)
active(add(0(),X)) -> mark(X)
active(add(s(X),Y)) -> mark(s(add(X,Y)))
active(and(X1,X2)) -> and(active(X1),X2)
active(and(false(),Y)) -> mark(false())
active(and(true(),X)) -> mark(X)
active(first(X1,X2)) -> first(X1,active(X2))
active(first(X1,X2)) -> first(active(X1),X2)
active(first(0(),X)) -> mark(nil())
active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z)))
active(from(X)) -> mark(cons(X,from(s(X))))
active(if(X1,X2,X3)) -> if(active(X1),X2,X3)
active(if(false(),X,Y)) -> mark(Y)
active(if(true(),X,Y)) -> mark(X)
add(mark(X1),X2) -> mark(add(X1,X2))
add(ok(X1),ok(X2)) -> ok(add(X1,X2))
and(mark(X1),X2) -> mark(and(X1,X2))
and(ok(X1),ok(X2)) -> ok(and(X1,X2))
cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
first(X1,mark(X2)) -> mark(first(X1,X2))
first(mark(X1),X2) -> mark(first(X1,X2))
first(ok(X1),ok(X2)) -> ok(first(X1,X2))
from(ok(X)) -> ok(from(X))
if(mark(X1),X2,X3) -> mark(if(X1,X2,X3))
if(ok(X1),ok(X2),ok(X3)) -> ok(if(X1,X2,X3))
proper(0()) -> ok(0())
proper(add(X1,X2)) -> add(proper(X1),proper(X2))
proper(and(X1,X2)) -> and(proper(X1),proper(X2))
proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
proper(false()) -> ok(false())
proper(first(X1,X2)) -> first(proper(X1),proper(X2))
proper(from(X)) -> from(proper(X))
proper(if(X1,X2,X3)) -> if(proper(X1),proper(X2),proper(X3))
proper(nil()) -> ok(nil())
proper(s(X)) -> s(proper(X))
proper(true()) -> ok(true())
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
- Signature:
{active/1,add/2,and/2,cons/2,first/2,from/1,if/3,proper/1,s/1,top/1} / {0/0,false/0,mark/1,nil/0,ok/1
,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {active,add,and,cons,first,from,if,proper,s
,top} and constructors {0,false,mark,nil,ok,true}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
active(add(X1,X2)) -> add(active(X1),X2)
active(add(0(),X)) -> mark(X)
active(add(s(X),Y)) -> mark(s(add(X,Y)))
active(and(X1,X2)) -> and(active(X1),X2)
active(and(false(),Y)) -> mark(false())
active(and(true(),X)) -> mark(X)
active(first(X1,X2)) -> first(X1,active(X2))
active(first(X1,X2)) -> first(active(X1),X2)
active(first(0(),X)) -> mark(nil())
active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z)))
active(from(X)) -> mark(cons(X,from(s(X))))
active(if(X1,X2,X3)) -> if(active(X1),X2,X3)
active(if(false(),X,Y)) -> mark(Y)
active(if(true(),X,Y)) -> mark(X)
add(mark(X1),X2) -> mark(add(X1,X2))
add(ok(X1),ok(X2)) -> ok(add(X1,X2))
and(mark(X1),X2) -> mark(and(X1,X2))
and(ok(X1),ok(X2)) -> ok(and(X1,X2))
cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
first(X1,mark(X2)) -> mark(first(X1,X2))
first(mark(X1),X2) -> mark(first(X1,X2))
first(ok(X1),ok(X2)) -> ok(first(X1,X2))
from(ok(X)) -> ok(from(X))
if(mark(X1),X2,X3) -> mark(if(X1,X2,X3))
if(ok(X1),ok(X2),ok(X3)) -> ok(if(X1,X2,X3))
proper(0()) -> ok(0())
proper(add(X1,X2)) -> add(proper(X1),proper(X2))
proper(and(X1,X2)) -> and(proper(X1),proper(X2))
proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
proper(false()) -> ok(false())
proper(first(X1,X2)) -> first(proper(X1),proper(X2))
proper(from(X)) -> from(proper(X))
proper(if(X1,X2,X3)) -> if(proper(X1),proper(X2),proper(X3))
proper(nil()) -> ok(nil())
proper(s(X)) -> s(proper(X))
proper(true()) -> ok(true())
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
- Signature:
{active/1,add/2,and/2,cons/2,first/2,from/1,if/3,proper/1,s/1,top/1} / {0/0,false/0,mark/1,nil/0,ok/1
,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {active,add,and,cons,first,from,if,proper,s
,top} and constructors {0,false,mark,nil,ok,true}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
add(x,y){x -> mark(x)} =
add(mark(x),y) ->^+ mark(add(x,y))
= C[add(x,y) = add(x,y){}]
WORST_CASE(Omega(n^1),?)