* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: active(add(X1,X2)) -> add(active(X1),X2) active(add(0(),X)) -> mark(X) active(add(s(X),Y)) -> mark(s(add(X,Y))) active(and(X1,X2)) -> and(active(X1),X2) active(and(false(),Y)) -> mark(false()) active(and(true(),X)) -> mark(X) active(first(X1,X2)) -> first(X1,active(X2)) active(first(X1,X2)) -> first(active(X1),X2) active(first(0(),X)) -> mark(nil()) active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) active(from(X)) -> mark(cons(X,from(s(X)))) active(if(X1,X2,X3)) -> if(active(X1),X2,X3) active(if(false(),X,Y)) -> mark(Y) active(if(true(),X,Y)) -> mark(X) add(mark(X1),X2) -> mark(add(X1,X2)) add(ok(X1),ok(X2)) -> ok(add(X1,X2)) and(mark(X1),X2) -> mark(and(X1,X2)) and(ok(X1),ok(X2)) -> ok(and(X1,X2)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) first(X1,mark(X2)) -> mark(first(X1,X2)) first(mark(X1),X2) -> mark(first(X1,X2)) first(ok(X1),ok(X2)) -> ok(first(X1,X2)) from(ok(X)) -> ok(from(X)) if(mark(X1),X2,X3) -> mark(if(X1,X2,X3)) if(ok(X1),ok(X2),ok(X3)) -> ok(if(X1,X2,X3)) proper(0()) -> ok(0()) proper(add(X1,X2)) -> add(proper(X1),proper(X2)) proper(and(X1,X2)) -> and(proper(X1),proper(X2)) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(false()) -> ok(false()) proper(first(X1,X2)) -> first(proper(X1),proper(X2)) proper(from(X)) -> from(proper(X)) proper(if(X1,X2,X3)) -> if(proper(X1),proper(X2),proper(X3)) proper(nil()) -> ok(nil()) proper(s(X)) -> s(proper(X)) proper(true()) -> ok(true()) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {active/1,add/2,and/2,cons/2,first/2,from/1,if/3,proper/1,s/1,top/1} / {0/0,false/0,mark/1,nil/0,ok/1 ,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,add,and,cons,first,from,if,proper,s ,top} and constructors {0,false,mark,nil,ok,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: active(add(X1,X2)) -> add(active(X1),X2) active(add(0(),X)) -> mark(X) active(add(s(X),Y)) -> mark(s(add(X,Y))) active(and(X1,X2)) -> and(active(X1),X2) active(and(false(),Y)) -> mark(false()) active(and(true(),X)) -> mark(X) active(first(X1,X2)) -> first(X1,active(X2)) active(first(X1,X2)) -> first(active(X1),X2) active(first(0(),X)) -> mark(nil()) active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) active(from(X)) -> mark(cons(X,from(s(X)))) active(if(X1,X2,X3)) -> if(active(X1),X2,X3) active(if(false(),X,Y)) -> mark(Y) active(if(true(),X,Y)) -> mark(X) add(mark(X1),X2) -> mark(add(X1,X2)) add(ok(X1),ok(X2)) -> ok(add(X1,X2)) and(mark(X1),X2) -> mark(and(X1,X2)) and(ok(X1),ok(X2)) -> ok(and(X1,X2)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) first(X1,mark(X2)) -> mark(first(X1,X2)) first(mark(X1),X2) -> mark(first(X1,X2)) first(ok(X1),ok(X2)) -> ok(first(X1,X2)) from(ok(X)) -> ok(from(X)) if(mark(X1),X2,X3) -> mark(if(X1,X2,X3)) if(ok(X1),ok(X2),ok(X3)) -> ok(if(X1,X2,X3)) proper(0()) -> ok(0()) proper(add(X1,X2)) -> add(proper(X1),proper(X2)) proper(and(X1,X2)) -> and(proper(X1),proper(X2)) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(false()) -> ok(false()) proper(first(X1,X2)) -> first(proper(X1),proper(X2)) proper(from(X)) -> from(proper(X)) proper(if(X1,X2,X3)) -> if(proper(X1),proper(X2),proper(X3)) proper(nil()) -> ok(nil()) proper(s(X)) -> s(proper(X)) proper(true()) -> ok(true()) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {active/1,add/2,and/2,cons/2,first/2,from/1,if/3,proper/1,s/1,top/1} / {0/0,false/0,mark/1,nil/0,ok/1 ,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,add,and,cons,first,from,if,proper,s ,top} and constructors {0,false,mark,nil,ok,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: add(x,y){x -> mark(x)} = add(mark(x),y) ->^+ mark(add(x,y)) = C[add(x,y) = add(x,y){}] WORST_CASE(Omega(n^1),?)