* Step 1: Sum WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) activate(n__g(X)) -> g(X) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(f(n__a()))) g(X) -> n__g(X) - Signature: {a/0,activate/1,f/1,g/1} / {n__a/0,n__f/1,n__g/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,activate,f,g} and constructors {n__a,n__f,n__g} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DependencyPairs WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) activate(n__g(X)) -> g(X) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(f(n__a()))) g(X) -> n__g(X) - Signature: {a/0,activate/1,f/1,g/1} / {n__a/0,n__f/1,n__g/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,activate,f,g} and constructors {n__a,n__f,n__g} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs a#() -> c_1() activate#(X) -> c_2() activate#(n__a()) -> c_3(a#()) activate#(n__f(X)) -> c_4(f#(X)) activate#(n__g(X)) -> c_5(g#(X)) f#(X) -> c_6() f#(n__f(n__a())) -> c_7(f#(n__g(f(n__a()))),f#(n__a())) g#(X) -> c_8() Weak DPs and mark the set of starting terms. * Step 3: UsableRules WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: a#() -> c_1() activate#(X) -> c_2() activate#(n__a()) -> c_3(a#()) activate#(n__f(X)) -> c_4(f#(X)) activate#(n__g(X)) -> c_5(g#(X)) f#(X) -> c_6() f#(n__f(n__a())) -> c_7(f#(n__g(f(n__a()))),f#(n__a())) g#(X) -> c_8() - Weak TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) activate(n__g(X)) -> g(X) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(f(n__a()))) g(X) -> n__g(X) - Signature: {a/0,activate/1,f/1,g/1,a#/0,activate#/1,f#/1,g#/1} / {n__a/0,n__f/1,n__g/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1 ,c_6/0,c_7/2,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,activate#,f#,g#} and constructors {n__a,n__f,n__g} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: f(X) -> n__f(X) a#() -> c_1() activate#(X) -> c_2() activate#(n__a()) -> c_3(a#()) activate#(n__f(X)) -> c_4(f#(X)) activate#(n__g(X)) -> c_5(g#(X)) f#(X) -> c_6() f#(n__f(n__a())) -> c_7(f#(n__g(f(n__a()))),f#(n__a())) g#(X) -> c_8() * Step 4: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: a#() -> c_1() activate#(X) -> c_2() activate#(n__a()) -> c_3(a#()) activate#(n__f(X)) -> c_4(f#(X)) activate#(n__g(X)) -> c_5(g#(X)) f#(X) -> c_6() f#(n__f(n__a())) -> c_7(f#(n__g(f(n__a()))),f#(n__a())) g#(X) -> c_8() - Weak TRS: f(X) -> n__f(X) - Signature: {a/0,activate/1,f/1,g/1,a#/0,activate#/1,f#/1,g#/1} / {n__a/0,n__f/1,n__g/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1 ,c_6/0,c_7/2,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,activate#,f#,g#} and constructors {n__a,n__f,n__g} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:a#() -> c_1() 2:S:activate#(X) -> c_2() 3:S:activate#(n__a()) -> c_3(a#()) -->_1 a#() -> c_1():1 4:S:activate#(n__f(X)) -> c_4(f#(X)) -->_1 f#(n__f(n__a())) -> c_7(f#(n__g(f(n__a()))),f#(n__a())):7 -->_1 f#(X) -> c_6():6 5:S:activate#(n__g(X)) -> c_5(g#(X)) -->_1 g#(X) -> c_8():8 6:S:f#(X) -> c_6() 7:S:f#(n__f(n__a())) -> c_7(f#(n__g(f(n__a()))),f#(n__a())) -->_2 f#(X) -> c_6():6 -->_1 f#(X) -> c_6():6 8:S:g#(X) -> c_8() The dependency graph contains no loops, we remove all dependency pairs. * Step 5: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: f(X) -> n__f(X) - Signature: {a/0,activate/1,f/1,g/1,a#/0,activate#/1,f#/1,g#/1} / {n__a/0,n__f/1,n__g/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1 ,c_6/0,c_7/2,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,activate#,f#,g#} and constructors {n__a,n__f,n__g} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))