0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 179 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 11 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 299 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 43 ms)
↳24 CpxRNTS
↳25 FinalProof (⇔, 0 ms)
↳26 BOUNDS(1, n^1)
a__f(f(a)) → a__f(g(f(a)))
mark(f(X)) → a__f(X)
mark(a) → a
mark(g(X)) → g(mark(X))
a__f(X) → f(X)
a__f(f(a)) → a__f(g(f(a))) [1]
mark(f(X)) → a__f(X) [1]
mark(a) → a [1]
mark(g(X)) → g(mark(X)) [1]
a__f(X) → f(X) [1]
a__f(f(a)) → a__f(g(f(a))) [1]
mark(f(X)) → a__f(X) [1]
mark(a) → a [1]
mark(g(X)) → g(mark(X)) [1]
a__f(X) → f(X) [1]
a__f :: a:f:g → a:f:g f :: a:f:g → a:f:g a :: a:f:g g :: a:f:g → a:f:g mark :: a:f:g → a:f:g |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
a__f
mark
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
a => 0
a__f(z) -{ 1 }→ a__f(1 + (1 + 0)) :|: z = 1 + 0
a__f(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
mark(z) -{ 1 }→ a__f(X) :|: z = 1 + X, X >= 0
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 1 }→ 1 + mark(X) :|: z = 1 + X, X >= 0
a__f(z) -{ 1 }→ a__f(1 + (1 + 0)) :|: z = 1 + 0
a__f(z) -{ 1 }→ 1 + z :|: z >= 0
mark(z) -{ 1 }→ a__f(z - 1) :|: z - 1 >= 0
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 1 }→ 1 + mark(z - 1) :|: z - 1 >= 0
{ a__f } { mark } |
a__f(z) -{ 1 }→ a__f(1 + (1 + 0)) :|: z = 1 + 0
a__f(z) -{ 1 }→ 1 + z :|: z >= 0
mark(z) -{ 1 }→ a__f(z - 1) :|: z - 1 >= 0
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 1 }→ 1 + mark(z - 1) :|: z - 1 >= 0
a__f(z) -{ 1 }→ a__f(1 + (1 + 0)) :|: z = 1 + 0
a__f(z) -{ 1 }→ 1 + z :|: z >= 0
mark(z) -{ 1 }→ a__f(z - 1) :|: z - 1 >= 0
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 1 }→ 1 + mark(z - 1) :|: z - 1 >= 0
a__f: runtime: ?, size: O(n1) [2 + z] |
a__f(z) -{ 1 }→ a__f(1 + (1 + 0)) :|: z = 1 + 0
a__f(z) -{ 1 }→ 1 + z :|: z >= 0
mark(z) -{ 1 }→ a__f(z - 1) :|: z - 1 >= 0
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 1 }→ 1 + mark(z - 1) :|: z - 1 >= 0
a__f: runtime: O(1) [2], size: O(n1) [2 + z] |
a__f(z) -{ 3 }→ s :|: s >= 0, s <= 1 * (1 + (1 + 0)) + 2, z = 1 + 0
a__f(z) -{ 1 }→ 1 + z :|: z >= 0
mark(z) -{ 3 }→ s' :|: s' >= 0, s' <= 1 * (z - 1) + 2, z - 1 >= 0
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 1 }→ 1 + mark(z - 1) :|: z - 1 >= 0
a__f: runtime: O(1) [2], size: O(n1) [2 + z] |
a__f(z) -{ 3 }→ s :|: s >= 0, s <= 1 * (1 + (1 + 0)) + 2, z = 1 + 0
a__f(z) -{ 1 }→ 1 + z :|: z >= 0
mark(z) -{ 3 }→ s' :|: s' >= 0, s' <= 1 * (z - 1) + 2, z - 1 >= 0
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 1 }→ 1 + mark(z - 1) :|: z - 1 >= 0
a__f: runtime: O(1) [2], size: O(n1) [2 + z] mark: runtime: ?, size: O(n1) [1 + z] |
a__f(z) -{ 3 }→ s :|: s >= 0, s <= 1 * (1 + (1 + 0)) + 2, z = 1 + 0
a__f(z) -{ 1 }→ 1 + z :|: z >= 0
mark(z) -{ 3 }→ s' :|: s' >= 0, s' <= 1 * (z - 1) + 2, z - 1 >= 0
mark(z) -{ 1 }→ 0 :|: z = 0
mark(z) -{ 1 }→ 1 + mark(z - 1) :|: z - 1 >= 0
a__f: runtime: O(1) [2], size: O(n1) [2 + z] mark: runtime: O(n1) [3 + z], size: O(n1) [1 + z] |