(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

f(n__f(n__a)) → f(n__g(n__f(n__a)))
f(X) → n__f(X)
an__a
g(X) → n__g(X)
activate(n__f(X)) → f(X)
activate(n__a) → a
activate(n__g(X)) → g(activate(X))
activate(X) → X

Rewrite Strategy: INNERMOST

(1) CpxTrsMatchBoundsProof (EQUIVALENT transformation)

A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 2.
The certificate found is represented by the following graph.
Start state: 1
Accept states: [2]
Transitions:
1→2[f_1|0, a|0, g_1|0, activate_1|0, n__f_1|1, n__a|1, n__g_1|1, f_1|1, a|1, n__f_1|2, n__a|2]
1→3[f_1|1, n__f_1|2]
1→6[g_1|1, n__g_1|2]
2→2[n__f_1|0, n__a|0, n__g_1|0]
3→4[n__g_1|1]
4→5[n__f_1|1]
5→2[n__a|1]
6→2[activate_1|1, f_1|1, n__f_1|1, a|1, n__a|1, n__g_1|1, n__f_1|2, n__a|2]
6→6[g_1|1, n__g_1|2]
6→3[f_1|1, n__f_1|2]

(2) BOUNDS(1, n^1)