* Step 1: Sum WORST_CASE(Omega(n^1),O(n^3))
+ Considered Problem:
- Strict TRS:
a__from(X) -> cons(mark(X),from(s(X)))
a__from(X) -> from(X)
a__length(X) -> length(X)
a__length(cons(X,Y)) -> s(a__length1(Y))
a__length(nil()) -> 0()
a__length1(X) -> a__length(X)
a__length1(X) -> length1(X)
mark(0()) -> 0()
mark(cons(X1,X2)) -> cons(mark(X1),X2)
mark(from(X)) -> a__from(mark(X))
mark(length(X)) -> a__length(X)
mark(length1(X)) -> a__length1(X)
mark(nil()) -> nil()
mark(s(X)) -> s(mark(X))
- Signature:
{a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0
,cons,from,length,length1,nil,s}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
a__from(X) -> cons(mark(X),from(s(X)))
a__from(X) -> from(X)
a__length(X) -> length(X)
a__length(cons(X,Y)) -> s(a__length1(Y))
a__length(nil()) -> 0()
a__length1(X) -> a__length(X)
a__length1(X) -> length1(X)
mark(0()) -> 0()
mark(cons(X1,X2)) -> cons(mark(X1),X2)
mark(from(X)) -> a__from(mark(X))
mark(length(X)) -> a__length(X)
mark(length1(X)) -> a__length1(X)
mark(nil()) -> nil()
mark(s(X)) -> s(mark(X))
- Signature:
{a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0
,cons,from,length,length1,nil,s}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
mark(x){x -> cons(x,y)} =
mark(cons(x,y)) ->^+ cons(mark(x),y)
= C[mark(x) = mark(x){}]
** Step 1.b:1: WeightGap WORST_CASE(?,O(n^3))
+ Considered Problem:
- Strict TRS:
a__from(X) -> cons(mark(X),from(s(X)))
a__from(X) -> from(X)
a__length(X) -> length(X)
a__length(cons(X,Y)) -> s(a__length1(Y))
a__length(nil()) -> 0()
a__length1(X) -> a__length(X)
a__length1(X) -> length1(X)
mark(0()) -> 0()
mark(cons(X1,X2)) -> cons(mark(X1),X2)
mark(from(X)) -> a__from(mark(X))
mark(length(X)) -> a__length(X)
mark(length1(X)) -> a__length1(X)
mark(nil()) -> nil()
mark(s(X)) -> s(mark(X))
- Signature:
{a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0
,cons,from,length,length1,nil,s}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(a__from) = {1},
uargs(cons) = {1},
uargs(s) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(0) = [11]
p(a__from) = [1] x1 + [1]
p(a__length) = [0]
p(a__length1) = [0]
p(cons) = [1] x1 + [0]
p(from) = [1] x1 + [0]
p(length) = [0]
p(length1) = [0]
p(mark) = [1] x1 + [0]
p(nil) = [0]
p(s) = [1] x1 + [0]
Following rules are strictly oriented:
a__from(X) = [1] X + [1]
> [1] X + [0]
= cons(mark(X),from(s(X)))
a__from(X) = [1] X + [1]
> [1] X + [0]
= from(X)
Following rules are (at-least) weakly oriented:
a__length(X) = [0]
>= [0]
= length(X)
a__length(cons(X,Y)) = [0]
>= [0]
= s(a__length1(Y))
a__length(nil()) = [0]
>= [11]
= 0()
a__length1(X) = [0]
>= [0]
= a__length(X)
a__length1(X) = [0]
>= [0]
= length1(X)
mark(0()) = [11]
>= [11]
= 0()
mark(cons(X1,X2)) = [1] X1 + [0]
>= [1] X1 + [0]
= cons(mark(X1),X2)
mark(from(X)) = [1] X + [0]
>= [1] X + [1]
= a__from(mark(X))
mark(length(X)) = [0]
>= [0]
= a__length(X)
mark(length1(X)) = [0]
>= [0]
= a__length1(X)
mark(nil()) = [0]
>= [0]
= nil()
mark(s(X)) = [1] X + [0]
>= [1] X + [0]
= s(mark(X))
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:2: WeightGap WORST_CASE(?,O(n^3))
+ Considered Problem:
- Strict TRS:
a__length(X) -> length(X)
a__length(cons(X,Y)) -> s(a__length1(Y))
a__length(nil()) -> 0()
a__length1(X) -> a__length(X)
a__length1(X) -> length1(X)
mark(0()) -> 0()
mark(cons(X1,X2)) -> cons(mark(X1),X2)
mark(from(X)) -> a__from(mark(X))
mark(length(X)) -> a__length(X)
mark(length1(X)) -> a__length1(X)
mark(nil()) -> nil()
mark(s(X)) -> s(mark(X))
- Weak TRS:
a__from(X) -> cons(mark(X),from(s(X)))
a__from(X) -> from(X)
- Signature:
{a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0
,cons,from,length,length1,nil,s}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(a__from) = {1},
uargs(cons) = {1},
uargs(s) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(0) = [0]
p(a__from) = [1] x1 + [1]
p(a__length) = [7]
p(a__length1) = [0]
p(cons) = [1] x1 + [1]
p(from) = [1] x1 + [1]
p(length) = [9]
p(length1) = [0]
p(mark) = [1] x1 + [0]
p(nil) = [0]
p(s) = [1] x1 + [9]
Following rules are strictly oriented:
a__length(nil()) = [7]
> [0]
= 0()
mark(length(X)) = [9]
> [7]
= a__length(X)
Following rules are (at-least) weakly oriented:
a__from(X) = [1] X + [1]
>= [1] X + [1]
= cons(mark(X),from(s(X)))
a__from(X) = [1] X + [1]
>= [1] X + [1]
= from(X)
a__length(X) = [7]
>= [9]
= length(X)
a__length(cons(X,Y)) = [7]
>= [9]
= s(a__length1(Y))
a__length1(X) = [0]
>= [7]
= a__length(X)
a__length1(X) = [0]
>= [0]
= length1(X)
mark(0()) = [0]
>= [0]
= 0()
mark(cons(X1,X2)) = [1] X1 + [1]
>= [1] X1 + [1]
= cons(mark(X1),X2)
mark(from(X)) = [1] X + [1]
>= [1] X + [1]
= a__from(mark(X))
mark(length1(X)) = [0]
>= [0]
= a__length1(X)
mark(nil()) = [0]
>= [0]
= nil()
mark(s(X)) = [1] X + [9]
>= [1] X + [9]
= s(mark(X))
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:3: WeightGap WORST_CASE(?,O(n^3))
+ Considered Problem:
- Strict TRS:
a__length(X) -> length(X)
a__length(cons(X,Y)) -> s(a__length1(Y))
a__length1(X) -> a__length(X)
a__length1(X) -> length1(X)
mark(0()) -> 0()
mark(cons(X1,X2)) -> cons(mark(X1),X2)
mark(from(X)) -> a__from(mark(X))
mark(length1(X)) -> a__length1(X)
mark(nil()) -> nil()
mark(s(X)) -> s(mark(X))
- Weak TRS:
a__from(X) -> cons(mark(X),from(s(X)))
a__from(X) -> from(X)
a__length(nil()) -> 0()
mark(length(X)) -> a__length(X)
- Signature:
{a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0
,cons,from,length,length1,nil,s}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(a__from) = {1},
uargs(cons) = {1},
uargs(s) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(0) = [6]
p(a__from) = [1] x1 + [9]
p(a__length) = [6]
p(a__length1) = [0]
p(cons) = [1] x1 + [4]
p(from) = [1] x1 + [9]
p(length) = [1]
p(length1) = [0]
p(mark) = [1] x1 + [5]
p(nil) = [0]
p(s) = [1] x1 + [0]
Following rules are strictly oriented:
a__length(X) = [6]
> [1]
= length(X)
a__length(cons(X,Y)) = [6]
> [0]
= s(a__length1(Y))
mark(0()) = [11]
> [6]
= 0()
mark(length1(X)) = [5]
> [0]
= a__length1(X)
mark(nil()) = [5]
> [0]
= nil()
Following rules are (at-least) weakly oriented:
a__from(X) = [1] X + [9]
>= [1] X + [9]
= cons(mark(X),from(s(X)))
a__from(X) = [1] X + [9]
>= [1] X + [9]
= from(X)
a__length(nil()) = [6]
>= [6]
= 0()
a__length1(X) = [0]
>= [6]
= a__length(X)
a__length1(X) = [0]
>= [0]
= length1(X)
mark(cons(X1,X2)) = [1] X1 + [9]
>= [1] X1 + [9]
= cons(mark(X1),X2)
mark(from(X)) = [1] X + [14]
>= [1] X + [14]
= a__from(mark(X))
mark(length(X)) = [6]
>= [6]
= a__length(X)
mark(s(X)) = [1] X + [5]
>= [1] X + [5]
= s(mark(X))
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:4: MI WORST_CASE(?,O(n^3))
+ Considered Problem:
- Strict TRS:
a__length1(X) -> a__length(X)
a__length1(X) -> length1(X)
mark(cons(X1,X2)) -> cons(mark(X1),X2)
mark(from(X)) -> a__from(mark(X))
mark(s(X)) -> s(mark(X))
- Weak TRS:
a__from(X) -> cons(mark(X),from(s(X)))
a__from(X) -> from(X)
a__length(X) -> length(X)
a__length(cons(X,Y)) -> s(a__length1(Y))
a__length(nil()) -> 0()
mark(0()) -> 0()
mark(length(X)) -> a__length(X)
mark(length1(X)) -> a__length1(X)
mark(nil()) -> nil()
- Signature:
{a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0
,cons,from,length,length1,nil,s}
+ Applied Processor:
MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
+ Details:
We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
The following argument positions are considered usable:
uargs(a__from) = {1},
uargs(cons) = {1},
uargs(s) = {1}
Following symbols are considered usable:
{a__from,a__length,a__length1,mark}
TcT has computed the following interpretation:
p(0) = [0]
p(a__from) = [1] x_1 + [3]
p(a__length) = [1]
p(a__length1) = [1]
p(cons) = [1] x_1 + [1]
p(from) = [1] x_1 + [3]
p(length) = [1]
p(length1) = [0]
p(mark) = [1] x_1 + [1]
p(nil) = [1]
p(s) = [1] x_1 + [0]
Following rules are strictly oriented:
a__length1(X) = [1]
> [0]
= length1(X)
Following rules are (at-least) weakly oriented:
a__from(X) = [1] X + [3]
>= [1] X + [2]
= cons(mark(X),from(s(X)))
a__from(X) = [1] X + [3]
>= [1] X + [3]
= from(X)
a__length(X) = [1]
>= [1]
= length(X)
a__length(cons(X,Y)) = [1]
>= [1]
= s(a__length1(Y))
a__length(nil()) = [1]
>= [0]
= 0()
a__length1(X) = [1]
>= [1]
= a__length(X)
mark(0()) = [1]
>= [0]
= 0()
mark(cons(X1,X2)) = [1] X1 + [2]
>= [1] X1 + [2]
= cons(mark(X1),X2)
mark(from(X)) = [1] X + [4]
>= [1] X + [4]
= a__from(mark(X))
mark(length(X)) = [2]
>= [1]
= a__length(X)
mark(length1(X)) = [1]
>= [1]
= a__length1(X)
mark(nil()) = [2]
>= [1]
= nil()
mark(s(X)) = [1] X + [1]
>= [1] X + [1]
= s(mark(X))
** Step 1.b:5: MI WORST_CASE(?,O(n^3))
+ Considered Problem:
- Strict TRS:
a__length1(X) -> a__length(X)
mark(cons(X1,X2)) -> cons(mark(X1),X2)
mark(from(X)) -> a__from(mark(X))
mark(s(X)) -> s(mark(X))
- Weak TRS:
a__from(X) -> cons(mark(X),from(s(X)))
a__from(X) -> from(X)
a__length(X) -> length(X)
a__length(cons(X,Y)) -> s(a__length1(Y))
a__length(nil()) -> 0()
a__length1(X) -> length1(X)
mark(0()) -> 0()
mark(length(X)) -> a__length(X)
mark(length1(X)) -> a__length1(X)
mark(nil()) -> nil()
- Signature:
{a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0
,cons,from,length,length1,nil,s}
+ Applied Processor:
MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
+ Details:
We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
The following argument positions are considered usable:
uargs(a__from) = {1},
uargs(cons) = {1},
uargs(s) = {1}
Following symbols are considered usable:
{a__from,a__length,a__length1,mark}
TcT has computed the following interpretation:
p(0) = [4]
[0]
p(a__from) = [1 0] x_1 + [4]
[0 0] [3]
p(a__length) = [0 3] x_1 + [0]
[0 0] [0]
p(a__length1) = [0 3] x_1 + [3]
[0 0] [0]
p(cons) = [1 0] x_1 + [0 0] x_2 + [0]
[0 0] [0 1] [1]
p(from) = [1 0] x_1 + [4]
[0 0] [2]
p(length) = [0 3] x_1 + [0]
[0 0] [0]
p(length1) = [0 3] x_1 + [0]
[0 0] [0]
p(mark) = [1 0] x_1 + [4]
[0 2] [0]
p(nil) = [4]
[4]
p(s) = [1 0] x_1 + [0]
[0 0] [0]
Following rules are strictly oriented:
a__length1(X) = [0 3] X + [3]
[0 0] [0]
> [0 3] X + [0]
[0 0] [0]
= a__length(X)
Following rules are (at-least) weakly oriented:
a__from(X) = [1 0] X + [4]
[0 0] [3]
>= [1 0] X + [4]
[0 0] [3]
= cons(mark(X),from(s(X)))
a__from(X) = [1 0] X + [4]
[0 0] [3]
>= [1 0] X + [4]
[0 0] [2]
= from(X)
a__length(X) = [0 3] X + [0]
[0 0] [0]
>= [0 3] X + [0]
[0 0] [0]
= length(X)
a__length(cons(X,Y)) = [0 3] Y + [3]
[0 0] [0]
>= [0 3] Y + [3]
[0 0] [0]
= s(a__length1(Y))
a__length(nil()) = [12]
[0]
>= [4]
[0]
= 0()
a__length1(X) = [0 3] X + [3]
[0 0] [0]
>= [0 3] X + [0]
[0 0] [0]
= length1(X)
mark(0()) = [8]
[0]
>= [4]
[0]
= 0()
mark(cons(X1,X2)) = [1 0] X1 + [0 0] X2 + [4]
[0 0] [0 2] [2]
>= [1 0] X1 + [0 0] X2 + [4]
[0 0] [0 1] [1]
= cons(mark(X1),X2)
mark(from(X)) = [1 0] X + [8]
[0 0] [4]
>= [1 0] X + [8]
[0 0] [3]
= a__from(mark(X))
mark(length(X)) = [0 3] X + [4]
[0 0] [0]
>= [0 3] X + [0]
[0 0] [0]
= a__length(X)
mark(length1(X)) = [0 3] X + [4]
[0 0] [0]
>= [0 3] X + [3]
[0 0] [0]
= a__length1(X)
mark(nil()) = [8]
[8]
>= [4]
[4]
= nil()
mark(s(X)) = [1 0] X + [4]
[0 0] [0]
>= [1 0] X + [4]
[0 0] [0]
= s(mark(X))
** Step 1.b:6: MI WORST_CASE(?,O(n^3))
+ Considered Problem:
- Strict TRS:
mark(cons(X1,X2)) -> cons(mark(X1),X2)
mark(from(X)) -> a__from(mark(X))
mark(s(X)) -> s(mark(X))
- Weak TRS:
a__from(X) -> cons(mark(X),from(s(X)))
a__from(X) -> from(X)
a__length(X) -> length(X)
a__length(cons(X,Y)) -> s(a__length1(Y))
a__length(nil()) -> 0()
a__length1(X) -> a__length(X)
a__length1(X) -> length1(X)
mark(0()) -> 0()
mark(length(X)) -> a__length(X)
mark(length1(X)) -> a__length1(X)
mark(nil()) -> nil()
- Signature:
{a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0
,cons,from,length,length1,nil,s}
+ Applied Processor:
MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
+ Details:
We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
The following argument positions are considered usable:
uargs(a__from) = {1},
uargs(cons) = {1},
uargs(s) = {1}
Following symbols are considered usable:
{a__from,a__length,a__length1,mark}
TcT has computed the following interpretation:
p(0) = [0]
[0]
p(a__from) = [1 4] x_1 + [0]
[0 1] [1]
p(a__length) = [0]
[0]
p(a__length1) = [0]
[0]
p(cons) = [1 0] x_1 + [0]
[0 1] [1]
p(from) = [1 4] x_1 + [0]
[0 1] [1]
p(length) = [0]
[0]
p(length1) = [0]
[0]
p(mark) = [1 4] x_1 + [0]
[0 1] [0]
p(nil) = [0]
[0]
p(s) = [1 0] x_1 + [0]
[0 1] [0]
Following rules are strictly oriented:
mark(cons(X1,X2)) = [1 4] X1 + [4]
[0 1] [1]
> [1 4] X1 + [0]
[0 1] [1]
= cons(mark(X1),X2)
mark(from(X)) = [1 8] X + [4]
[0 1] [1]
> [1 8] X + [0]
[0 1] [1]
= a__from(mark(X))
Following rules are (at-least) weakly oriented:
a__from(X) = [1 4] X + [0]
[0 1] [1]
>= [1 4] X + [0]
[0 1] [1]
= cons(mark(X),from(s(X)))
a__from(X) = [1 4] X + [0]
[0 1] [1]
>= [1 4] X + [0]
[0 1] [1]
= from(X)
a__length(X) = [0]
[0]
>= [0]
[0]
= length(X)
a__length(cons(X,Y)) = [0]
[0]
>= [0]
[0]
= s(a__length1(Y))
a__length(nil()) = [0]
[0]
>= [0]
[0]
= 0()
a__length1(X) = [0]
[0]
>= [0]
[0]
= a__length(X)
a__length1(X) = [0]
[0]
>= [0]
[0]
= length1(X)
mark(0()) = [0]
[0]
>= [0]
[0]
= 0()
mark(length(X)) = [0]
[0]
>= [0]
[0]
= a__length(X)
mark(length1(X)) = [0]
[0]
>= [0]
[0]
= a__length1(X)
mark(nil()) = [0]
[0]
>= [0]
[0]
= nil()
mark(s(X)) = [1 4] X + [0]
[0 1] [0]
>= [1 4] X + [0]
[0 1] [0]
= s(mark(X))
** Step 1.b:7: MI WORST_CASE(?,O(n^3))
+ Considered Problem:
- Strict TRS:
mark(s(X)) -> s(mark(X))
- Weak TRS:
a__from(X) -> cons(mark(X),from(s(X)))
a__from(X) -> from(X)
a__length(X) -> length(X)
a__length(cons(X,Y)) -> s(a__length1(Y))
a__length(nil()) -> 0()
a__length1(X) -> a__length(X)
a__length1(X) -> length1(X)
mark(0()) -> 0()
mark(cons(X1,X2)) -> cons(mark(X1),X2)
mark(from(X)) -> a__from(mark(X))
mark(length(X)) -> a__length(X)
mark(length1(X)) -> a__length1(X)
mark(nil()) -> nil()
- Signature:
{a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0
,cons,from,length,length1,nil,s}
+ Applied Processor:
MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 3, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
+ Details:
We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
The following argument positions are considered usable:
uargs(a__from) = {1},
uargs(cons) = {1},
uargs(s) = {1}
Following symbols are considered usable:
{a__from,a__length,a__length1,mark}
TcT has computed the following interpretation:
p(0) = [1]
[1]
[0]
p(a__from) = [1 2 0] [4]
[0 1 0] x_1 + [0]
[1 2 0] [5]
p(a__length) = [0 0 0] [1]
[0 0 2] x_1 + [4]
[0 0 0] [0]
p(a__length1) = [0 0 0] [1]
[0 0 2] x_1 + [4]
[0 0 0] [0]
p(cons) = [1 0 0] [0 0 1] [2]
[0 1 0] x_1 + [0 0 0] x_2 + [0]
[0 0 0] [0 0 1] [2]
p(from) = [1 2 0] [4]
[0 1 0] x_1 + [0]
[0 0 0] [0]
p(length) = [0 0 0] [0]
[0 0 2] x_1 + [4]
[0 0 0] [0]
p(length1) = [0 0 0] [0]
[0 0 2] x_1 + [4]
[0 0 0] [0]
p(mark) = [1 2 0] [2]
[0 1 0] x_1 + [0]
[2 0 0] [0]
p(nil) = [1]
[0]
[2]
p(s) = [1 0 0] [0]
[0 1 0] x_1 + [2]
[0 0 0] [0]
Following rules are strictly oriented:
mark(s(X)) = [1 2 0] [6]
[0 1 0] X + [2]
[2 0 0] [0]
> [1 2 0] [2]
[0 1 0] X + [2]
[0 0 0] [0]
= s(mark(X))
Following rules are (at-least) weakly oriented:
a__from(X) = [1 2 0] [4]
[0 1 0] X + [0]
[1 2 0] [5]
>= [1 2 0] [4]
[0 1 0] X + [0]
[0 0 0] [2]
= cons(mark(X),from(s(X)))
a__from(X) = [1 2 0] [4]
[0 1 0] X + [0]
[1 2 0] [5]
>= [1 2 0] [4]
[0 1 0] X + [0]
[0 0 0] [0]
= from(X)
a__length(X) = [0 0 0] [1]
[0 0 2] X + [4]
[0 0 0] [0]
>= [0 0 0] [0]
[0 0 2] X + [4]
[0 0 0] [0]
= length(X)
a__length(cons(X,Y)) = [0 0 0] [1]
[0 0 2] Y + [8]
[0 0 0] [0]
>= [0 0 0] [1]
[0 0 2] Y + [6]
[0 0 0] [0]
= s(a__length1(Y))
a__length(nil()) = [1]
[8]
[0]
>= [1]
[1]
[0]
= 0()
a__length1(X) = [0 0 0] [1]
[0 0 2] X + [4]
[0 0 0] [0]
>= [0 0 0] [1]
[0 0 2] X + [4]
[0 0 0] [0]
= a__length(X)
a__length1(X) = [0 0 0] [1]
[0 0 2] X + [4]
[0 0 0] [0]
>= [0 0 0] [0]
[0 0 2] X + [4]
[0 0 0] [0]
= length1(X)
mark(0()) = [5]
[1]
[2]
>= [1]
[1]
[0]
= 0()
mark(cons(X1,X2)) = [1 2 0] [0 0 1] [4]
[0 1 0] X1 + [0 0 0] X2 + [0]
[2 0 0] [0 0 2] [4]
>= [1 2 0] [0 0 1] [4]
[0 1 0] X1 + [0 0 0] X2 + [0]
[0 0 0] [0 0 1] [2]
= cons(mark(X1),X2)
mark(from(X)) = [1 4 0] [6]
[0 1 0] X + [0]
[2 4 0] [8]
>= [1 4 0] [6]
[0 1 0] X + [0]
[1 4 0] [7]
= a__from(mark(X))
mark(length(X)) = [0 0 4] [10]
[0 0 2] X + [4]
[0 0 0] [0]
>= [0 0 0] [1]
[0 0 2] X + [4]
[0 0 0] [0]
= a__length(X)
mark(length1(X)) = [0 0 4] [10]
[0 0 2] X + [4]
[0 0 0] [0]
>= [0 0 0] [1]
[0 0 2] X + [4]
[0 0 0] [0]
= a__length1(X)
mark(nil()) = [3]
[0]
[2]
>= [1]
[0]
[2]
= nil()
** Step 1.b:8: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
a__from(X) -> cons(mark(X),from(s(X)))
a__from(X) -> from(X)
a__length(X) -> length(X)
a__length(cons(X,Y)) -> s(a__length1(Y))
a__length(nil()) -> 0()
a__length1(X) -> a__length(X)
a__length1(X) -> length1(X)
mark(0()) -> 0()
mark(cons(X1,X2)) -> cons(mark(X1),X2)
mark(from(X)) -> a__from(mark(X))
mark(length(X)) -> a__length(X)
mark(length1(X)) -> a__length1(X)
mark(nil()) -> nil()
mark(s(X)) -> s(mark(X))
- Signature:
{a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0
,cons,from,length,length1,nil,s}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
WORST_CASE(Omega(n^1),O(n^3))