* Step 1: Sum WORST_CASE(Omega(n^1),O(n^3)) + Considered Problem: - Strict TRS: a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) a__length(X) -> length(X) a__length(cons(X,Y)) -> s(a__length1(Y)) a__length(nil()) -> 0() a__length1(X) -> a__length(X) a__length1(X) -> length1(X) mark(0()) -> 0() mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(from(X)) -> a__from(mark(X)) mark(length(X)) -> a__length(X) mark(length1(X)) -> a__length1(X) mark(nil()) -> nil() mark(s(X)) -> s(mark(X)) - Signature: {a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0 ,cons,from,length,length1,nil,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) a__length(X) -> length(X) a__length(cons(X,Y)) -> s(a__length1(Y)) a__length(nil()) -> 0() a__length1(X) -> a__length(X) a__length1(X) -> length1(X) mark(0()) -> 0() mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(from(X)) -> a__from(mark(X)) mark(length(X)) -> a__length(X) mark(length1(X)) -> a__length1(X) mark(nil()) -> nil() mark(s(X)) -> s(mark(X)) - Signature: {a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0 ,cons,from,length,length1,nil,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: mark(x){x -> cons(x,y)} = mark(cons(x,y)) ->^+ cons(mark(x),y) = C[mark(x) = mark(x){}] ** Step 1.b:1: WeightGap WORST_CASE(?,O(n^3)) + Considered Problem: - Strict TRS: a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) a__length(X) -> length(X) a__length(cons(X,Y)) -> s(a__length1(Y)) a__length(nil()) -> 0() a__length1(X) -> a__length(X) a__length1(X) -> length1(X) mark(0()) -> 0() mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(from(X)) -> a__from(mark(X)) mark(length(X)) -> a__length(X) mark(length1(X)) -> a__length1(X) mark(nil()) -> nil() mark(s(X)) -> s(mark(X)) - Signature: {a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0 ,cons,from,length,length1,nil,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(a__from) = {1}, uargs(cons) = {1}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [11] p(a__from) = [1] x1 + [1] p(a__length) = [0] p(a__length1) = [0] p(cons) = [1] x1 + [0] p(from) = [1] x1 + [0] p(length) = [0] p(length1) = [0] p(mark) = [1] x1 + [0] p(nil) = [0] p(s) = [1] x1 + [0] Following rules are strictly oriented: a__from(X) = [1] X + [1] > [1] X + [0] = cons(mark(X),from(s(X))) a__from(X) = [1] X + [1] > [1] X + [0] = from(X) Following rules are (at-least) weakly oriented: a__length(X) = [0] >= [0] = length(X) a__length(cons(X,Y)) = [0] >= [0] = s(a__length1(Y)) a__length(nil()) = [0] >= [11] = 0() a__length1(X) = [0] >= [0] = a__length(X) a__length1(X) = [0] >= [0] = length1(X) mark(0()) = [11] >= [11] = 0() mark(cons(X1,X2)) = [1] X1 + [0] >= [1] X1 + [0] = cons(mark(X1),X2) mark(from(X)) = [1] X + [0] >= [1] X + [1] = a__from(mark(X)) mark(length(X)) = [0] >= [0] = a__length(X) mark(length1(X)) = [0] >= [0] = a__length1(X) mark(nil()) = [0] >= [0] = nil() mark(s(X)) = [1] X + [0] >= [1] X + [0] = s(mark(X)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:2: WeightGap WORST_CASE(?,O(n^3)) + Considered Problem: - Strict TRS: a__length(X) -> length(X) a__length(cons(X,Y)) -> s(a__length1(Y)) a__length(nil()) -> 0() a__length1(X) -> a__length(X) a__length1(X) -> length1(X) mark(0()) -> 0() mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(from(X)) -> a__from(mark(X)) mark(length(X)) -> a__length(X) mark(length1(X)) -> a__length1(X) mark(nil()) -> nil() mark(s(X)) -> s(mark(X)) - Weak TRS: a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) - Signature: {a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0 ,cons,from,length,length1,nil,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(a__from) = {1}, uargs(cons) = {1}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(a__from) = [1] x1 + [1] p(a__length) = [7] p(a__length1) = [0] p(cons) = [1] x1 + [1] p(from) = [1] x1 + [1] p(length) = [9] p(length1) = [0] p(mark) = [1] x1 + [0] p(nil) = [0] p(s) = [1] x1 + [9] Following rules are strictly oriented: a__length(nil()) = [7] > [0] = 0() mark(length(X)) = [9] > [7] = a__length(X) Following rules are (at-least) weakly oriented: a__from(X) = [1] X + [1] >= [1] X + [1] = cons(mark(X),from(s(X))) a__from(X) = [1] X + [1] >= [1] X + [1] = from(X) a__length(X) = [7] >= [9] = length(X) a__length(cons(X,Y)) = [7] >= [9] = s(a__length1(Y)) a__length1(X) = [0] >= [7] = a__length(X) a__length1(X) = [0] >= [0] = length1(X) mark(0()) = [0] >= [0] = 0() mark(cons(X1,X2)) = [1] X1 + [1] >= [1] X1 + [1] = cons(mark(X1),X2) mark(from(X)) = [1] X + [1] >= [1] X + [1] = a__from(mark(X)) mark(length1(X)) = [0] >= [0] = a__length1(X) mark(nil()) = [0] >= [0] = nil() mark(s(X)) = [1] X + [9] >= [1] X + [9] = s(mark(X)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:3: WeightGap WORST_CASE(?,O(n^3)) + Considered Problem: - Strict TRS: a__length(X) -> length(X) a__length(cons(X,Y)) -> s(a__length1(Y)) a__length1(X) -> a__length(X) a__length1(X) -> length1(X) mark(0()) -> 0() mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(from(X)) -> a__from(mark(X)) mark(length1(X)) -> a__length1(X) mark(nil()) -> nil() mark(s(X)) -> s(mark(X)) - Weak TRS: a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) a__length(nil()) -> 0() mark(length(X)) -> a__length(X) - Signature: {a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0 ,cons,from,length,length1,nil,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(a__from) = {1}, uargs(cons) = {1}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [6] p(a__from) = [1] x1 + [9] p(a__length) = [6] p(a__length1) = [0] p(cons) = [1] x1 + [4] p(from) = [1] x1 + [9] p(length) = [1] p(length1) = [0] p(mark) = [1] x1 + [5] p(nil) = [0] p(s) = [1] x1 + [0] Following rules are strictly oriented: a__length(X) = [6] > [1] = length(X) a__length(cons(X,Y)) = [6] > [0] = s(a__length1(Y)) mark(0()) = [11] > [6] = 0() mark(length1(X)) = [5] > [0] = a__length1(X) mark(nil()) = [5] > [0] = nil() Following rules are (at-least) weakly oriented: a__from(X) = [1] X + [9] >= [1] X + [9] = cons(mark(X),from(s(X))) a__from(X) = [1] X + [9] >= [1] X + [9] = from(X) a__length(nil()) = [6] >= [6] = 0() a__length1(X) = [0] >= [6] = a__length(X) a__length1(X) = [0] >= [0] = length1(X) mark(cons(X1,X2)) = [1] X1 + [9] >= [1] X1 + [9] = cons(mark(X1),X2) mark(from(X)) = [1] X + [14] >= [1] X + [14] = a__from(mark(X)) mark(length(X)) = [6] >= [6] = a__length(X) mark(s(X)) = [1] X + [5] >= [1] X + [5] = s(mark(X)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:4: MI WORST_CASE(?,O(n^3)) + Considered Problem: - Strict TRS: a__length1(X) -> a__length(X) a__length1(X) -> length1(X) mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(from(X)) -> a__from(mark(X)) mark(s(X)) -> s(mark(X)) - Weak TRS: a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) a__length(X) -> length(X) a__length(cons(X,Y)) -> s(a__length1(Y)) a__length(nil()) -> 0() mark(0()) -> 0() mark(length(X)) -> a__length(X) mark(length1(X)) -> a__length1(X) mark(nil()) -> nil() - Signature: {a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0 ,cons,from,length,length1,nil,s} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(a__from) = {1}, uargs(cons) = {1}, uargs(s) = {1} Following symbols are considered usable: {a__from,a__length,a__length1,mark} TcT has computed the following interpretation: p(0) = [0] p(a__from) = [1] x_1 + [3] p(a__length) = [1] p(a__length1) = [1] p(cons) = [1] x_1 + [1] p(from) = [1] x_1 + [3] p(length) = [1] p(length1) = [0] p(mark) = [1] x_1 + [1] p(nil) = [1] p(s) = [1] x_1 + [0] Following rules are strictly oriented: a__length1(X) = [1] > [0] = length1(X) Following rules are (at-least) weakly oriented: a__from(X) = [1] X + [3] >= [1] X + [2] = cons(mark(X),from(s(X))) a__from(X) = [1] X + [3] >= [1] X + [3] = from(X) a__length(X) = [1] >= [1] = length(X) a__length(cons(X,Y)) = [1] >= [1] = s(a__length1(Y)) a__length(nil()) = [1] >= [0] = 0() a__length1(X) = [1] >= [1] = a__length(X) mark(0()) = [1] >= [0] = 0() mark(cons(X1,X2)) = [1] X1 + [2] >= [1] X1 + [2] = cons(mark(X1),X2) mark(from(X)) = [1] X + [4] >= [1] X + [4] = a__from(mark(X)) mark(length(X)) = [2] >= [1] = a__length(X) mark(length1(X)) = [1] >= [1] = a__length1(X) mark(nil()) = [2] >= [1] = nil() mark(s(X)) = [1] X + [1] >= [1] X + [1] = s(mark(X)) ** Step 1.b:5: MI WORST_CASE(?,O(n^3)) + Considered Problem: - Strict TRS: a__length1(X) -> a__length(X) mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(from(X)) -> a__from(mark(X)) mark(s(X)) -> s(mark(X)) - Weak TRS: a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) a__length(X) -> length(X) a__length(cons(X,Y)) -> s(a__length1(Y)) a__length(nil()) -> 0() a__length1(X) -> length1(X) mark(0()) -> 0() mark(length(X)) -> a__length(X) mark(length1(X)) -> a__length1(X) mark(nil()) -> nil() - Signature: {a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0 ,cons,from,length,length1,nil,s} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(a__from) = {1}, uargs(cons) = {1}, uargs(s) = {1} Following symbols are considered usable: {a__from,a__length,a__length1,mark} TcT has computed the following interpretation: p(0) = [4] [0] p(a__from) = [1 0] x_1 + [4] [0 0] [3] p(a__length) = [0 3] x_1 + [0] [0 0] [0] p(a__length1) = [0 3] x_1 + [3] [0 0] [0] p(cons) = [1 0] x_1 + [0 0] x_2 + [0] [0 0] [0 1] [1] p(from) = [1 0] x_1 + [4] [0 0] [2] p(length) = [0 3] x_1 + [0] [0 0] [0] p(length1) = [0 3] x_1 + [0] [0 0] [0] p(mark) = [1 0] x_1 + [4] [0 2] [0] p(nil) = [4] [4] p(s) = [1 0] x_1 + [0] [0 0] [0] Following rules are strictly oriented: a__length1(X) = [0 3] X + [3] [0 0] [0] > [0 3] X + [0] [0 0] [0] = a__length(X) Following rules are (at-least) weakly oriented: a__from(X) = [1 0] X + [4] [0 0] [3] >= [1 0] X + [4] [0 0] [3] = cons(mark(X),from(s(X))) a__from(X) = [1 0] X + [4] [0 0] [3] >= [1 0] X + [4] [0 0] [2] = from(X) a__length(X) = [0 3] X + [0] [0 0] [0] >= [0 3] X + [0] [0 0] [0] = length(X) a__length(cons(X,Y)) = [0 3] Y + [3] [0 0] [0] >= [0 3] Y + [3] [0 0] [0] = s(a__length1(Y)) a__length(nil()) = [12] [0] >= [4] [0] = 0() a__length1(X) = [0 3] X + [3] [0 0] [0] >= [0 3] X + [0] [0 0] [0] = length1(X) mark(0()) = [8] [0] >= [4] [0] = 0() mark(cons(X1,X2)) = [1 0] X1 + [0 0] X2 + [4] [0 0] [0 2] [2] >= [1 0] X1 + [0 0] X2 + [4] [0 0] [0 1] [1] = cons(mark(X1),X2) mark(from(X)) = [1 0] X + [8] [0 0] [4] >= [1 0] X + [8] [0 0] [3] = a__from(mark(X)) mark(length(X)) = [0 3] X + [4] [0 0] [0] >= [0 3] X + [0] [0 0] [0] = a__length(X) mark(length1(X)) = [0 3] X + [4] [0 0] [0] >= [0 3] X + [3] [0 0] [0] = a__length1(X) mark(nil()) = [8] [8] >= [4] [4] = nil() mark(s(X)) = [1 0] X + [4] [0 0] [0] >= [1 0] X + [4] [0 0] [0] = s(mark(X)) ** Step 1.b:6: MI WORST_CASE(?,O(n^3)) + Considered Problem: - Strict TRS: mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(from(X)) -> a__from(mark(X)) mark(s(X)) -> s(mark(X)) - Weak TRS: a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) a__length(X) -> length(X) a__length(cons(X,Y)) -> s(a__length1(Y)) a__length(nil()) -> 0() a__length1(X) -> a__length(X) a__length1(X) -> length1(X) mark(0()) -> 0() mark(length(X)) -> a__length(X) mark(length1(X)) -> a__length1(X) mark(nil()) -> nil() - Signature: {a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0 ,cons,from,length,length1,nil,s} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(a__from) = {1}, uargs(cons) = {1}, uargs(s) = {1} Following symbols are considered usable: {a__from,a__length,a__length1,mark} TcT has computed the following interpretation: p(0) = [0] [0] p(a__from) = [1 4] x_1 + [0] [0 1] [1] p(a__length) = [0] [0] p(a__length1) = [0] [0] p(cons) = [1 0] x_1 + [0] [0 1] [1] p(from) = [1 4] x_1 + [0] [0 1] [1] p(length) = [0] [0] p(length1) = [0] [0] p(mark) = [1 4] x_1 + [0] [0 1] [0] p(nil) = [0] [0] p(s) = [1 0] x_1 + [0] [0 1] [0] Following rules are strictly oriented: mark(cons(X1,X2)) = [1 4] X1 + [4] [0 1] [1] > [1 4] X1 + [0] [0 1] [1] = cons(mark(X1),X2) mark(from(X)) = [1 8] X + [4] [0 1] [1] > [1 8] X + [0] [0 1] [1] = a__from(mark(X)) Following rules are (at-least) weakly oriented: a__from(X) = [1 4] X + [0] [0 1] [1] >= [1 4] X + [0] [0 1] [1] = cons(mark(X),from(s(X))) a__from(X) = [1 4] X + [0] [0 1] [1] >= [1 4] X + [0] [0 1] [1] = from(X) a__length(X) = [0] [0] >= [0] [0] = length(X) a__length(cons(X,Y)) = [0] [0] >= [0] [0] = s(a__length1(Y)) a__length(nil()) = [0] [0] >= [0] [0] = 0() a__length1(X) = [0] [0] >= [0] [0] = a__length(X) a__length1(X) = [0] [0] >= [0] [0] = length1(X) mark(0()) = [0] [0] >= [0] [0] = 0() mark(length(X)) = [0] [0] >= [0] [0] = a__length(X) mark(length1(X)) = [0] [0] >= [0] [0] = a__length1(X) mark(nil()) = [0] [0] >= [0] [0] = nil() mark(s(X)) = [1 4] X + [0] [0 1] [0] >= [1 4] X + [0] [0 1] [0] = s(mark(X)) ** Step 1.b:7: MI WORST_CASE(?,O(n^3)) + Considered Problem: - Strict TRS: mark(s(X)) -> s(mark(X)) - Weak TRS: a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) a__length(X) -> length(X) a__length(cons(X,Y)) -> s(a__length1(Y)) a__length(nil()) -> 0() a__length1(X) -> a__length(X) a__length1(X) -> length1(X) mark(0()) -> 0() mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(from(X)) -> a__from(mark(X)) mark(length(X)) -> a__length(X) mark(length1(X)) -> a__length1(X) mark(nil()) -> nil() - Signature: {a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0 ,cons,from,length,length1,nil,s} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 3, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(a__from) = {1}, uargs(cons) = {1}, uargs(s) = {1} Following symbols are considered usable: {a__from,a__length,a__length1,mark} TcT has computed the following interpretation: p(0) = [1] [1] [0] p(a__from) = [1 2 0] [4] [0 1 0] x_1 + [0] [1 2 0] [5] p(a__length) = [0 0 0] [1] [0 0 2] x_1 + [4] [0 0 0] [0] p(a__length1) = [0 0 0] [1] [0 0 2] x_1 + [4] [0 0 0] [0] p(cons) = [1 0 0] [0 0 1] [2] [0 1 0] x_1 + [0 0 0] x_2 + [0] [0 0 0] [0 0 1] [2] p(from) = [1 2 0] [4] [0 1 0] x_1 + [0] [0 0 0] [0] p(length) = [0 0 0] [0] [0 0 2] x_1 + [4] [0 0 0] [0] p(length1) = [0 0 0] [0] [0 0 2] x_1 + [4] [0 0 0] [0] p(mark) = [1 2 0] [2] [0 1 0] x_1 + [0] [2 0 0] [0] p(nil) = [1] [0] [2] p(s) = [1 0 0] [0] [0 1 0] x_1 + [2] [0 0 0] [0] Following rules are strictly oriented: mark(s(X)) = [1 2 0] [6] [0 1 0] X + [2] [2 0 0] [0] > [1 2 0] [2] [0 1 0] X + [2] [0 0 0] [0] = s(mark(X)) Following rules are (at-least) weakly oriented: a__from(X) = [1 2 0] [4] [0 1 0] X + [0] [1 2 0] [5] >= [1 2 0] [4] [0 1 0] X + [0] [0 0 0] [2] = cons(mark(X),from(s(X))) a__from(X) = [1 2 0] [4] [0 1 0] X + [0] [1 2 0] [5] >= [1 2 0] [4] [0 1 0] X + [0] [0 0 0] [0] = from(X) a__length(X) = [0 0 0] [1] [0 0 2] X + [4] [0 0 0] [0] >= [0 0 0] [0] [0 0 2] X + [4] [0 0 0] [0] = length(X) a__length(cons(X,Y)) = [0 0 0] [1] [0 0 2] Y + [8] [0 0 0] [0] >= [0 0 0] [1] [0 0 2] Y + [6] [0 0 0] [0] = s(a__length1(Y)) a__length(nil()) = [1] [8] [0] >= [1] [1] [0] = 0() a__length1(X) = [0 0 0] [1] [0 0 2] X + [4] [0 0 0] [0] >= [0 0 0] [1] [0 0 2] X + [4] [0 0 0] [0] = a__length(X) a__length1(X) = [0 0 0] [1] [0 0 2] X + [4] [0 0 0] [0] >= [0 0 0] [0] [0 0 2] X + [4] [0 0 0] [0] = length1(X) mark(0()) = [5] [1] [2] >= [1] [1] [0] = 0() mark(cons(X1,X2)) = [1 2 0] [0 0 1] [4] [0 1 0] X1 + [0 0 0] X2 + [0] [2 0 0] [0 0 2] [4] >= [1 2 0] [0 0 1] [4] [0 1 0] X1 + [0 0 0] X2 + [0] [0 0 0] [0 0 1] [2] = cons(mark(X1),X2) mark(from(X)) = [1 4 0] [6] [0 1 0] X + [0] [2 4 0] [8] >= [1 4 0] [6] [0 1 0] X + [0] [1 4 0] [7] = a__from(mark(X)) mark(length(X)) = [0 0 4] [10] [0 0 2] X + [4] [0 0 0] [0] >= [0 0 0] [1] [0 0 2] X + [4] [0 0 0] [0] = a__length(X) mark(length1(X)) = [0 0 4] [10] [0 0 2] X + [4] [0 0 0] [0] >= [0 0 0] [1] [0 0 2] X + [4] [0 0 0] [0] = a__length1(X) mark(nil()) = [3] [0] [2] >= [1] [0] [2] = nil() ** Step 1.b:8: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: a__from(X) -> cons(mark(X),from(s(X))) a__from(X) -> from(X) a__length(X) -> length(X) a__length(cons(X,Y)) -> s(a__length1(Y)) a__length(nil()) -> 0() a__length1(X) -> a__length(X) a__length1(X) -> length1(X) mark(0()) -> 0() mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(from(X)) -> a__from(mark(X)) mark(length(X)) -> a__length(X) mark(length1(X)) -> a__length1(X) mark(nil()) -> nil() mark(s(X)) -> s(mark(X)) - Signature: {a__from/1,a__length/1,a__length1/1,mark/1} / {0/0,cons/2,from/1,length/1,length1/1,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__from,a__length,a__length1,mark} and constructors {0 ,cons,from,length,length1,nil,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^3))