* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            active(cons(X1,X2)) -> cons(active(X1),X2)
            active(from(X)) -> from(active(X))
            active(from(X)) -> mark(cons(X,from(s(X))))
            active(length(cons(X,Y))) -> mark(s(length1(Y)))
            active(length(nil())) -> mark(0())
            active(length1(X)) -> mark(length(X))
            active(s(X)) -> s(active(X))
            cons(mark(X1),X2) -> mark(cons(X1,X2))
            cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
            from(mark(X)) -> mark(from(X))
            from(ok(X)) -> ok(from(X))
            length(ok(X)) -> ok(length(X))
            length1(ok(X)) -> ok(length1(X))
            proper(0()) -> ok(0())
            proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
            proper(from(X)) -> from(proper(X))
            proper(length(X)) -> length(proper(X))
            proper(length1(X)) -> length1(proper(X))
            proper(nil()) -> ok(nil())
            proper(s(X)) -> s(proper(X))
            s(mark(X)) -> mark(s(X))
            s(ok(X)) -> ok(s(X))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
        - Signature:
            {active/1,cons/2,from/1,length/1,length1/1,proper/1,s/1,top/1} / {0/0,mark/1,nil/0,ok/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active,cons,from,length,length1,proper,s
            ,top} and constructors {0,mark,nil,ok}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            active(cons(X1,X2)) -> cons(active(X1),X2)
            active(from(X)) -> from(active(X))
            active(from(X)) -> mark(cons(X,from(s(X))))
            active(length(cons(X,Y))) -> mark(s(length1(Y)))
            active(length(nil())) -> mark(0())
            active(length1(X)) -> mark(length(X))
            active(s(X)) -> s(active(X))
            cons(mark(X1),X2) -> mark(cons(X1,X2))
            cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
            from(mark(X)) -> mark(from(X))
            from(ok(X)) -> ok(from(X))
            length(ok(X)) -> ok(length(X))
            length1(ok(X)) -> ok(length1(X))
            proper(0()) -> ok(0())
            proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
            proper(from(X)) -> from(proper(X))
            proper(length(X)) -> length(proper(X))
            proper(length1(X)) -> length1(proper(X))
            proper(nil()) -> ok(nil())
            proper(s(X)) -> s(proper(X))
            s(mark(X)) -> mark(s(X))
            s(ok(X)) -> ok(s(X))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
        - Signature:
            {active/1,cons/2,from/1,length/1,length1/1,proper/1,s/1,top/1} / {0/0,mark/1,nil/0,ok/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active,cons,from,length,length1,proper,s
            ,top} and constructors {0,mark,nil,ok}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          cons(x,y){x -> mark(x)} =
            cons(mark(x),y) ->^+ mark(cons(x,y))
              = C[cons(x,y) = cons(x,y){}]

WORST_CASE(Omega(n^1),?)