(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, 1).


The TRS R consists of the following rules:

f(g(x), g(y)) → f(p(f(g(x), s(y))), g(s(p(x))))
p(0) → g(0)
g(s(p(x))) → p(x)

Rewrite Strategy: INNERMOST

(1) DependencyGraphProof (BOTH BOUNDS(ID, ID) transformation)

The following rules are not reachable from basic terms in the dependency graph and can be removed:
f(g(x), g(y)) → f(p(f(g(x), s(y))), g(s(p(x))))
g(s(p(x))) → p(x)

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, 1).


The TRS R consists of the following rules:

p(0) → g(0)

Rewrite Strategy: INNERMOST

(3) CpxTrsMatchBoundsProof (EQUIVALENT transformation)

A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 1.
The certificate found is represented by the following graph.
Start state: 1
Accept states: [2]
Transitions:
1→2[p_1|0]
1→3[g_1|1]
2→2[0|0, g_1|0]
3→2[0|1]

(4) BOUNDS(1, n^1)

(5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted Cpx (relative) TRS to CDT

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(0) → g(0)
Tuples:

P(0) → c
S tuples:

P(0) → c
K tuples:none
Defined Rule Symbols:

p

Defined Pair Symbols:

P

Compound Symbols:

c

(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

P(0) → c

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(0) → g(0)
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

p

Defined Pair Symbols:none

Compound Symbols:none

(9) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty

(10) BOUNDS(1, 1)