(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
f(s(X)) → f(X)
g(cons(0, Y)) → g(Y)
g(cons(s(X), Y)) → s(X)
h(cons(X, Y)) → h(g(cons(X, Y)))
Rewrite Strategy: INNERMOST
(1) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3]
transitions:
s0(0) → 0
cons0(0, 0) → 0
00() → 0
f0(0) → 1
g0(0) → 2
h0(0) → 3
f1(0) → 1
g1(0) → 2
s1(0) → 2
cons1(0, 0) → 5
g1(5) → 4
h1(4) → 3
g1(0) → 4
s1(0) → 4
(2) BOUNDS(1, n^1)
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(s(z0)) → f(z0)
g(cons(0, z0)) → g(z0)
g(cons(s(z0), z1)) → s(z0)
h(cons(z0, z1)) → h(g(cons(z0, z1)))
Tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
G(cons(s(z0), z1)) → c2
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
S tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
G(cons(s(z0), z1)) → c2
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
K tuples:none
Defined Rule Symbols:
f, g, h
Defined Pair Symbols:
F, G, H
Compound Symbols:
c, c1, c2, c3
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
G(cons(s(z0), z1)) → c2
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(s(z0)) → f(z0)
g(cons(0, z0)) → g(z0)
g(cons(s(z0), z1)) → s(z0)
h(cons(z0, z1)) → h(g(cons(z0, z1)))
Tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
S tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
K tuples:none
Defined Rule Symbols:
f, g, h
Defined Pair Symbols:
F, G, H
Compound Symbols:
c, c1, c3
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
f(s(z0)) → f(z0)
h(cons(z0, z1)) → h(g(cons(z0, z1)))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(cons(0, z0)) → g(z0)
g(cons(s(z0), z1)) → s(z0)
Tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
S tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
K tuples:none
Defined Rule Symbols:
g
Defined Pair Symbols:
F, G, H
Compound Symbols:
c, c1, c3
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(s(z0)) → c(F(z0))
We considered the (Usable) Rules:none
And the Tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(F(x1)) = x1
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 0
POL(g(x1)) = 0
POL(s(x1)) = [1] + x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(cons(0, z0)) → g(z0)
g(cons(s(z0), z1)) → s(z0)
Tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
S tuples:
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
K tuples:
F(s(z0)) → c(F(z0))
Defined Rule Symbols:
g
Defined Pair Symbols:
F, G, H
Compound Symbols:
c, c1, c3
(11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
We considered the (Usable) Rules:
g(cons(0, z0)) → g(z0)
g(cons(s(z0), z1)) → s(z0)
And the Tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(F(x1)) = 0
POL(G(x1)) = [1]
POL(H(x1)) = x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = [2] + x1 + x2
POL(g(x1)) = 0
POL(s(x1)) = 0
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(cons(0, z0)) → g(z0)
g(cons(s(z0), z1)) → s(z0)
Tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
S tuples:
G(cons(0, z0)) → c1(G(z0))
K tuples:
F(s(z0)) → c(F(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
Defined Rule Symbols:
g
Defined Pair Symbols:
F, G, H
Compound Symbols:
c, c1, c3
(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(cons(0, z0)) → c1(G(z0))
We considered the (Usable) Rules:
g(cons(0, z0)) → g(z0)
g(cons(s(z0), z1)) → s(z0)
And the Tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(F(x1)) = 0
POL(G(x1)) = x1
POL(H(x1)) = x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = [1] + x1 + x2
POL(g(x1)) = 0
POL(s(x1)) = 0
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(cons(0, z0)) → g(z0)
g(cons(s(z0), z1)) → s(z0)
Tuples:
F(s(z0)) → c(F(z0))
G(cons(0, z0)) → c1(G(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
S tuples:none
K tuples:
F(s(z0)) → c(F(z0))
H(cons(z0, z1)) → c3(H(g(cons(z0, z1))), G(cons(z0, z1)))
G(cons(0, z0)) → c1(G(z0))
Defined Rule Symbols:
g
Defined Pair Symbols:
F, G, H
Compound Symbols:
c, c1, c3
(15) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(16) BOUNDS(1, 1)