0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxWeightedTrs
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CpxTypedWeightedTrs
↳7 CompletionProof (UPPER BOUND(ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳10 CpxTypedWeightedCompleteTrs
↳11 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳12 CpxRNTS
↳13 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 321 ms)
↳18 CpxRNTS
↳19 IntTrsBoundProof (UPPER BOUND(ID), 10 ms)
↳20 CpxRNTS
↳21 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 363 ms)
↳24 CpxRNTS
↳25 IntTrsBoundProof (UPPER BOUND(ID), 61 ms)
↳26 CpxRNTS
↳27 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 237 ms)
↳30 CpxRNTS
↳31 IntTrsBoundProof (UPPER BOUND(ID), 134 ms)
↳32 CpxRNTS
↳33 FinalProof (⇔, 0 ms)
↳34 BOUNDS(1, n^1)
+(X, 0) → X
+(X, s(Y)) → s(+(X, Y))
f(0, s(0), X) → f(X, +(X, X), X)
g(X, Y) → X
g(X, Y) → Y
+(X, 0) → X [1]
+(X, s(Y)) → s(+(X, Y)) [1]
f(0, s(0), X) → f(X, +(X, X), X) [1]
g(X, Y) → X [1]
g(X, Y) → Y [1]
+ => plus |
plus(X, 0) → X [1]
plus(X, s(Y)) → s(plus(X, Y)) [1]
f(0, s(0), X) → f(X, plus(X, X), X) [1]
g(X, Y) → X [1]
g(X, Y) → Y [1]
plus(X, 0) → X [1]
plus(X, s(Y)) → s(plus(X, Y)) [1]
f(0, s(0), X) → f(X, plus(X, X), X) [1]
g(X, Y) → X [1]
g(X, Y) → Y [1]
plus :: 0:s → 0:s → 0:s 0 :: 0:s s :: 0:s → 0:s f :: 0:s → 0:s → 0:s → f g :: g → g → g |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
f
g
plus
const, const1
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
const => 0
const1 => 0
f(z, z', z'') -{ 2 }→ f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0
f(z, z', z'') -{ 2 }→ f(1 + Y', 1 + plus(1 + Y', Y'), 1 + Y') :|: z'' = 1 + Y', Y' >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ X :|: z' = Y, Y >= 0, X >= 0, z = X
g(z, z') -{ 1 }→ Y :|: z' = Y, Y >= 0, X >= 0, z = X
plus(z, z') -{ 1 }→ X :|: X >= 0, z = X, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(X, Y) :|: Y >= 0, z' = 1 + Y, X >= 0, z = X
f(z, z', z'') -{ 2 }→ f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0
f(z, z', z'') -{ 2 }→ f(1 + (z'' - 1), 1 + plus(1 + (z'' - 1), z'' - 1), 1 + (z'' - 1)) :|: z'' - 1 >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0
{ g } { plus } { f } |
f(z, z', z'') -{ 2 }→ f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0
f(z, z', z'') -{ 2 }→ f(1 + (z'' - 1), 1 + plus(1 + (z'' - 1), z'' - 1), 1 + (z'' - 1)) :|: z'' - 1 >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0
f(z, z', z'') -{ 2 }→ f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0
f(z, z', z'') -{ 2 }→ f(1 + (z'' - 1), 1 + plus(1 + (z'' - 1), z'' - 1), 1 + (z'' - 1)) :|: z'' - 1 >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0
g: runtime: ?, size: O(n1) [z + z'] |
f(z, z', z'') -{ 2 }→ f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0
f(z, z', z'') -{ 2 }→ f(1 + (z'' - 1), 1 + plus(1 + (z'' - 1), z'' - 1), 1 + (z'' - 1)) :|: z'' - 1 >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0
g: runtime: O(1) [1], size: O(n1) [z + z'] |
f(z, z', z'') -{ 2 }→ f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0
f(z, z', z'') -{ 2 }→ f(1 + (z'' - 1), 1 + plus(1 + (z'' - 1), z'' - 1), 1 + (z'' - 1)) :|: z'' - 1 >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0
g: runtime: O(1) [1], size: O(n1) [z + z'] |
f(z, z', z'') -{ 2 }→ f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0
f(z, z', z'') -{ 2 }→ f(1 + (z'' - 1), 1 + plus(1 + (z'' - 1), z'' - 1), 1 + (z'' - 1)) :|: z'' - 1 >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0
g: runtime: O(1) [1], size: O(n1) [z + z'] plus: runtime: ?, size: O(n1) [z + z'] |
f(z, z', z'') -{ 2 }→ f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0
f(z, z', z'') -{ 2 }→ f(1 + (z'' - 1), 1 + plus(1 + (z'' - 1), z'' - 1), 1 + (z'' - 1)) :|: z'' - 1 >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z' - 1 >= 0, z >= 0
g: runtime: O(1) [1], size: O(n1) [z + z'] plus: runtime: O(n1) [1 + z'], size: O(n1) [z + z'] |
f(z, z', z'') -{ 2 }→ f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0
f(z, z', z'') -{ 2 + z'' }→ f(1 + (z'' - 1), 1 + s', 1 + (z'' - 1)) :|: s' >= 0, s' <= 1 * (1 + (z'' - 1)) + 1 * (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 + z' }→ 1 + s :|: s >= 0, s <= 1 * z + 1 * (z' - 1), z' - 1 >= 0, z >= 0
g: runtime: O(1) [1], size: O(n1) [z + z'] plus: runtime: O(n1) [1 + z'], size: O(n1) [z + z'] |
f(z, z', z'') -{ 2 }→ f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0
f(z, z', z'') -{ 2 + z'' }→ f(1 + (z'' - 1), 1 + s', 1 + (z'' - 1)) :|: s' >= 0, s' <= 1 * (1 + (z'' - 1)) + 1 * (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 + z' }→ 1 + s :|: s >= 0, s <= 1 * z + 1 * (z' - 1), z' - 1 >= 0, z >= 0
g: runtime: O(1) [1], size: O(n1) [z + z'] plus: runtime: O(n1) [1 + z'], size: O(n1) [z + z'] f: runtime: ?, size: O(1) [0] |
f(z, z', z'') -{ 2 }→ f(0, 0, 0) :|: z'' = 0, z' = 1 + 0, z = 0
f(z, z', z'') -{ 2 + z'' }→ f(1 + (z'' - 1), 1 + s', 1 + (z'' - 1)) :|: s' >= 0, s' <= 1 * (1 + (z'' - 1)) + 1 * (z'' - 1), z'' - 1 >= 0, z' = 1 + 0, z = 0
g(z, z') -{ 1 }→ z :|: z' >= 0, z >= 0
g(z, z') -{ 1 }→ z' :|: z' >= 0, z >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 + z' }→ 1 + s :|: s >= 0, s <= 1 * z + 1 * (z' - 1), z' - 1 >= 0, z >= 0
g: runtime: O(1) [1], size: O(n1) [z + z'] plus: runtime: O(n1) [1 + z'], size: O(n1) [z + z'] f: runtime: O(n1) [2 + z''], size: O(1) [0] |