* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
add(0(),X) -> X
add(s(X),Y) -> s(add(X,Y))
dbl(0()) -> 0()
dbl(s(X)) -> s(s(dbl(X)))
first(0(),X) -> nil()
first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
half(0()) -> 0()
half(dbl(X)) -> X
half(s(0())) -> 0()
half(s(s(X))) -> s(half(X))
sqr(0()) -> 0()
sqr(s(X)) -> s(add(sqr(X),dbl(X)))
terms(N) -> cons(recip(sqr(N)),terms(s(N)))
- Signature:
{add/2,dbl/1,first/2,half/1,sqr/1,terms/1} / {0/0,cons/2,nil/0,recip/1,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {add,dbl,first,half,sqr,terms} and constructors {0,cons
,nil,recip,s}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
add(0(),X) -> X
add(s(X),Y) -> s(add(X,Y))
dbl(0()) -> 0()
dbl(s(X)) -> s(s(dbl(X)))
first(0(),X) -> nil()
first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
half(0()) -> 0()
half(dbl(X)) -> X
half(s(0())) -> 0()
half(s(s(X))) -> s(half(X))
sqr(0()) -> 0()
sqr(s(X)) -> s(add(sqr(X),dbl(X)))
terms(N) -> cons(recip(sqr(N)),terms(s(N)))
- Signature:
{add/2,dbl/1,first/2,half/1,sqr/1,terms/1} / {0/0,cons/2,nil/0,recip/1,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {add,dbl,first,half,sqr,terms} and constructors {0,cons
,nil,recip,s}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
add(x,y){x -> s(x)} =
add(s(x),y) ->^+ s(add(x,y))
= C[add(x,y) = add(x,y){}]
WORST_CASE(Omega(n^1),?)