* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
adx(cons(X,Y)) -> incr(cons(X,adx(Y)))
hd(cons(X,Y)) -> X
incr(cons(X,Y)) -> cons(s(X),incr(Y))
nats() -> adx(zeros())
tl(cons(X,Y)) -> Y
zeros() -> cons(0(),zeros())
- Signature:
{adx/1,hd/1,incr/1,nats/0,tl/1,zeros/0} / {0/0,cons/2,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {adx,hd,incr,nats,tl,zeros} and constructors {0,cons,s}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
adx(cons(X,Y)) -> incr(cons(X,adx(Y)))
hd(cons(X,Y)) -> X
incr(cons(X,Y)) -> cons(s(X),incr(Y))
nats() -> adx(zeros())
tl(cons(X,Y)) -> Y
zeros() -> cons(0(),zeros())
- Signature:
{adx/1,hd/1,incr/1,nats/0,tl/1,zeros/0} / {0/0,cons/2,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {adx,hd,incr,nats,tl,zeros} and constructors {0,cons,s}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
adx(y){y -> cons(x,y)} =
adx(cons(x,y)) ->^+ incr(cons(x,adx(y)))
= C[adx(y) = adx(y){}]
WORST_CASE(Omega(n^1),?)