* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            adx(cons(X,Y)) -> incr(cons(X,adx(Y)))
            hd(cons(X,Y)) -> X
            incr(cons(X,Y)) -> cons(s(X),incr(Y))
            nats() -> adx(zeros())
            tl(cons(X,Y)) -> Y
            zeros() -> cons(0(),zeros())
        - Signature:
            {adx/1,hd/1,incr/1,nats/0,tl/1,zeros/0} / {0/0,cons/2,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {adx,hd,incr,nats,tl,zeros} and constructors {0,cons,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            adx(cons(X,Y)) -> incr(cons(X,adx(Y)))
            hd(cons(X,Y)) -> X
            incr(cons(X,Y)) -> cons(s(X),incr(Y))
            nats() -> adx(zeros())
            tl(cons(X,Y)) -> Y
            zeros() -> cons(0(),zeros())
        - Signature:
            {adx/1,hd/1,incr/1,nats/0,tl/1,zeros/0} / {0/0,cons/2,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {adx,hd,incr,nats,tl,zeros} and constructors {0,cons,s}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          adx(y){y -> cons(x,y)} =
            adx(cons(x,y)) ->^+ incr(cons(x,adx(y)))
              = C[adx(y) = adx(y){}]

WORST_CASE(Omega(n^1),?)