* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
first(0(),X) -> nil()
first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
from(X) -> cons(X,from(s(X)))
- Signature:
{first/2,from/1} / {0/0,cons/2,nil/0,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {first,from} and constructors {0,cons,nil,s}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
first(0(),X) -> nil()
first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
from(X) -> cons(X,from(s(X)))
- Signature:
{first/2,from/1} / {0/0,cons/2,nil/0,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {first,from} and constructors {0,cons,nil,s}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
first(x,z){x -> s(x),z -> cons(y,z)} =
first(s(x),cons(y,z)) ->^+ cons(y,first(x,z))
= C[first(x,z) = first(x,z){}]
WORST_CASE(Omega(n^1),?)