* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            f(X) -> cons(X,f(g(X)))
            g(0()) -> s(0())
            g(s(X)) -> s(s(g(X)))
            sel(0(),cons(X,Y)) -> X
            sel(s(X),cons(Y,Z)) -> sel(X,Z)
        - Signature:
            {f/1,g/1,sel/2} / {0/0,cons/2,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,g,sel} and constructors {0,cons,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            f(X) -> cons(X,f(g(X)))
            g(0()) -> s(0())
            g(s(X)) -> s(s(g(X)))
            sel(0(),cons(X,Y)) -> X
            sel(s(X),cons(Y,Z)) -> sel(X,Z)
        - Signature:
            {f/1,g/1,sel/2} / {0/0,cons/2,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,g,sel} and constructors {0,cons,s}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          g(x){x -> s(x)} =
            g(s(x)) ->^+ s(s(g(x)))
              = C[g(x) = g(x){}]

WORST_CASE(Omega(n^1),?)