* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            diff(X,Y) -> if(leq(X,Y),0(),s(diff(p(X),Y)))
            if(false(),X,Y) -> Y
            if(true(),X,Y) -> X
            leq(0(),Y) -> true()
            leq(s(X),0()) -> false()
            leq(s(X),s(Y)) -> leq(X,Y)
            p(0()) -> 0()
            p(s(X)) -> X
        - Signature:
            {diff/2,if/3,leq/2,p/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {diff,if,leq,p} and constructors {0,false,s,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            diff(X,Y) -> if(leq(X,Y),0(),s(diff(p(X),Y)))
            if(false(),X,Y) -> Y
            if(true(),X,Y) -> X
            leq(0(),Y) -> true()
            leq(s(X),0()) -> false()
            leq(s(X),s(Y)) -> leq(X,Y)
            p(0()) -> 0()
            p(s(X)) -> X
        - Signature:
            {diff/2,if/3,leq/2,p/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {diff,if,leq,p} and constructors {0,false,s,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          leq(x,y){x -> s(x),y -> s(y)} =
            leq(s(x),s(y)) ->^+ leq(x,y)
              = C[leq(x,y) = leq(x,y){}]

WORST_CASE(Omega(n^1),?)