* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            eq(X,Y) -> false()
            eq(0(),0()) -> true()
            eq(s(X),s(Y)) -> eq(X,Y)
            inf(X) -> cons(X,inf(s(X)))
            length(cons(X,L)) -> s(length(L))
            length(nil()) -> 0()
            take(0(),X) -> nil()
            take(s(X),cons(Y,L)) -> cons(Y,take(X,L))
        - Signature:
            {eq/2,inf/1,length/1,take/2} / {0/0,cons/2,false/0,nil/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq,inf,length,take} and constructors {0,cons,false,nil,s
            ,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            eq(X,Y) -> false()
            eq(0(),0()) -> true()
            eq(s(X),s(Y)) -> eq(X,Y)
            inf(X) -> cons(X,inf(s(X)))
            length(cons(X,L)) -> s(length(L))
            length(nil()) -> 0()
            take(0(),X) -> nil()
            take(s(X),cons(Y,L)) -> cons(Y,take(X,L))
        - Signature:
            {eq/2,inf/1,length/1,take/2} / {0/0,cons/2,false/0,nil/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq,inf,length,take} and constructors {0,cons,false,nil,s
            ,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          eq(x,y){x -> s(x),y -> s(y)} =
            eq(s(x),s(y)) ->^+ eq(x,y)
              = C[eq(x,y) = eq(x,y){}]

WORST_CASE(Omega(n^1),?)