* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            and(false(),Y) -> false()
            and(true(),X) -> X
            first(0(),X) -> nil()
            first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
            from(X) -> cons(X,from(s(X)))
            if(false(),X,Y) -> Y
            if(true(),X,Y) -> X
        - Signature:
            {add/2,and/2,first/2,from/1,if/3} / {0/0,cons/2,false/0,nil/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add,and,first,from,if} and constructors {0,cons,false,nil
            ,s,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            and(false(),Y) -> false()
            and(true(),X) -> X
            first(0(),X) -> nil()
            first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
            from(X) -> cons(X,from(s(X)))
            if(false(),X,Y) -> Y
            if(true(),X,Y) -> X
        - Signature:
            {add/2,and/2,first/2,from/1,if/3} / {0/0,cons/2,false/0,nil/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add,and,first,from,if} and constructors {0,cons,false,nil
            ,s,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          add(x,y){x -> s(x)} =
            add(s(x),y) ->^+ s(add(x,y))
              = C[add(x,y) = add(x,y){}]

WORST_CASE(Omega(n^1),?)