* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
add(0(),X) -> X
add(s(X),Y) -> s(add(X,Y))
and(false(),Y) -> false()
and(true(),X) -> X
first(0(),X) -> nil()
first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
from(X) -> cons(X,from(s(X)))
if(false(),X,Y) -> Y
if(true(),X,Y) -> X
- Signature:
{add/2,and/2,first/2,from/1,if/3} / {0/0,cons/2,false/0,nil/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {add,and,first,from,if} and constructors {0,cons,false,nil
,s,true}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
add(0(),X) -> X
add(s(X),Y) -> s(add(X,Y))
and(false(),Y) -> false()
and(true(),X) -> X
first(0(),X) -> nil()
first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
from(X) -> cons(X,from(s(X)))
if(false(),X,Y) -> Y
if(true(),X,Y) -> X
- Signature:
{add/2,and/2,first/2,from/1,if/3} / {0/0,cons/2,false/0,nil/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {add,and,first,from,if} and constructors {0,cons,false,nil
,s,true}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
add(x,y){x -> s(x)} =
add(s(x),y) ->^+ s(add(x,y))
= C[add(x,y) = add(x,y){}]
WORST_CASE(Omega(n^1),?)