* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
and(false(),y) -> false()
and(true(),y) -> y
eq(apply(t,s),apply(t',s')) -> and(eq(t,t'),eq(s,s'))
eq(apply(t,s),lambda(x,t)) -> false()
eq(apply(t,s),var(l)) -> false()
eq(cons(t,l),cons(t',l')) -> and(eq(t,t'),eq(l,l'))
eq(cons(t,l),nil()) -> false()
eq(lambda(x,t),apply(t,s)) -> false()
eq(lambda(x,t),lambda(x',t')) -> and(eq(x,x'),eq(t,t'))
eq(lambda(x,t),var(l)) -> false()
eq(nil(),cons(t,l)) -> false()
eq(nil(),nil()) -> true()
eq(var(l),apply(t,s)) -> false()
eq(var(l),lambda(x,t)) -> false()
eq(var(l),var(l')) -> eq(l,l')
if(false(),var(k),var(l')) -> var(l')
if(true(),var(k),var(l')) -> var(k)
ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s))
ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil()))))
,ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t)))
ren(var(l),var(k),var(l')) -> if(eq(l,l'),var(k),var(l'))
- Signature:
{and/2,eq/2,if/3,ren/3} / {apply/2,cons/2,false/0,lambda/2,nil/0,true/0,var/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {and,eq,if,ren} and constructors {apply,cons,false,lambda
,nil,true,var}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
and(false(),y) -> false()
and(true(),y) -> y
eq(apply(t,s),apply(t',s')) -> and(eq(t,t'),eq(s,s'))
eq(apply(t,s),lambda(x,t)) -> false()
eq(apply(t,s),var(l)) -> false()
eq(cons(t,l),cons(t',l')) -> and(eq(t,t'),eq(l,l'))
eq(cons(t,l),nil()) -> false()
eq(lambda(x,t),apply(t,s)) -> false()
eq(lambda(x,t),lambda(x',t')) -> and(eq(x,x'),eq(t,t'))
eq(lambda(x,t),var(l)) -> false()
eq(nil(),cons(t,l)) -> false()
eq(nil(),nil()) -> true()
eq(var(l),apply(t,s)) -> false()
eq(var(l),lambda(x,t)) -> false()
eq(var(l),var(l')) -> eq(l,l')
if(false(),var(k),var(l')) -> var(l')
if(true(),var(k),var(l')) -> var(k)
ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s))
ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil()))))
,ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t)))
ren(var(l),var(k),var(l')) -> if(eq(l,l'),var(k),var(l'))
- Signature:
{and/2,eq/2,if/3,ren/3} / {apply/2,cons/2,false/0,lambda/2,nil/0,true/0,var/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {and,eq,if,ren} and constructors {apply,cons,false,lambda
,nil,true,var}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
eq(x,z){x -> apply(x,y),z -> apply(z,u)} =
eq(apply(x,y),apply(z,u)) ->^+ and(eq(x,z),eq(y,u))
= C[eq(x,z) = eq(x,z){}]
WORST_CASE(Omega(n^1),?)