* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3} / {0/0,1/0,c/1,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {f,g,if} and constructors {0,1,c,false,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3} / {0/0,1/0,c/1,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {f,g,if} and constructors {0,1,c,false,s,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: f(x){x -> s(x)} = f(s(x)) ->^+ f(x) = C[f(x) = f(x){}] ** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3} / {0/0,1/0,c/1,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {f,g,if} and constructors {0,1,c,false,s,true} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs f#(0()) -> c_1() f#(1()) -> c_2() f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)) if#(false(),x,y) -> c_6() if#(true(),x,y) -> c_7() Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(0()) -> c_1() f#(1()) -> c_2() f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)) if#(false(),x,y) -> c_6() if#(true(),x,y) -> c_7() - Weak TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2,6,7} by application of Pre({1,2,6,7}) = {3,5}. Here rules are labelled as follows: 1: f#(0()) -> c_1() 2: f#(1()) -> c_2() 3: f#(s(x)) -> c_3(f#(x)) 4: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) 5: g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)) 6: if#(false(),x,y) -> c_6() 7: if#(true(),x,y) -> c_7() ** Step 1.b:3: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)) - Weak DPs: f#(0()) -> c_1() f#(1()) -> c_2() if#(false(),x,y) -> c_6() if#(true(),x,y) -> c_7() - Weak TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(s(x)) -> c_3(f#(x)) -->_1 f#(1()) -> c_2():5 -->_1 f#(0()) -> c_1():4 -->_1 f#(s(x)) -> c_3(f#(x)):1 2:S:g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) -->_2 g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)):3 -->_1 g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)):3 -->_2 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):2 -->_1 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):2 3:S:g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)) -->_1 if#(true(),x,y) -> c_7():7 -->_1 if#(false(),x,y) -> c_6():6 -->_2 f#(1()) -> c_2():5 -->_2 f#(0()) -> c_1():4 -->_2 f#(s(x)) -> c_3(f#(x)):1 4:W:f#(0()) -> c_1() 5:W:f#(1()) -> c_2() 6:W:if#(false(),x,y) -> c_6() 7:W:if#(true(),x,y) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: if#(false(),x,y) -> c_6() 7: if#(true(),x,y) -> c_7() 4: f#(0()) -> c_1() 5: f#(1()) -> c_2() ** Step 1.b:4: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)) - Weak TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:f#(s(x)) -> c_3(f#(x)) -->_1 f#(s(x)) -> c_3(f#(x)):1 2:S:g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) -->_2 g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)):3 -->_1 g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)):3 -->_2 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):2 -->_1 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):2 3:S:g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)) -->_2 f#(s(x)) -> c_3(f#(x)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: g#(s(x),s(y)) -> c_5(f#(x)) ** Step 1.b:5: Decompose WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(f#(x)) - Weak TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: f#(s(x)) -> c_3(f#(x)) - Weak DPs: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(f#(x)) - Weak TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0 ,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true} Problem (S) - Strict DPs: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(f#(x)) - Weak DPs: f#(s(x)) -> c_3(f#(x)) - Weak TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0 ,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true} *** Step 1.b:5.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(s(x)) -> c_3(f#(x)) - Weak DPs: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(f#(x)) - Weak TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: f#(s(x)) -> c_3(f#(x)) The strictly oriented rules are moved into the weak component. **** Step 1.b:5.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(s(x)) -> c_3(f#(x)) - Weak DPs: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(f#(x)) - Weak TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true} + Applied Processor: NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_4) = {1,2}, uargs(c_5) = {1} Following symbols are considered usable: {f#,g#,if#} TcT has computed the following interpretation: p(0) = [0] [0] [0] p(1) = [0] [0] [0] p(c) = [0 0 0] [1] [0 0 1] x1 + [1] [0 0 0] [0] p(f) = [1 0 1] [0] [1 1 0] x1 + [0] [0 1 1] [0] p(false) = [0] [0] [0] p(g) = [0 1 1] [0 1 1] [0] [0 0 0] x1 + [1 1 1] x2 + [0] [1 0 0] [0 0 0] [0] p(if) = [1 1 1] [0 0 0] [0] [0 0 0] x1 + [0 0 0] x3 + [0] [0 0 0] [0 0 1] [0] p(s) = [0 1 0] [1] [0 0 1] x1 + [0] [0 0 1] [1] p(true) = [0] [0] [0] p(f#) = [0 0 1] [0] [1 0 1] x1 + [0] [0 1 0] [0] p(g#) = [0 1 0] [0] [1 0 0] x1 + [0] [0 0 0] [1] p(if#) = [0] [0] [0] p(c_1) = [0] [0] [0] p(c_2) = [0] [0] [0] p(c_3) = [1 0 0] [0] [0 0 0] x1 + [0] [0 0 0] [0] p(c_4) = [1 0 0] [1 0 0] [0] [0 0 0] x1 + [0 0 0] x2 + [0] [0 0 0] [0 0 0] [1] p(c_5) = [1 0 0] [0] [0 0 1] x1 + [0] [0 0 0] [1] p(c_6) = [0] [0] [0] p(c_7) = [0] [0] [0] Following rules are strictly oriented: f#(s(x)) = [0 0 1] [1] [0 1 1] x + [2] [0 0 1] [0] > [0 0 1] [0] [0 0 0] x + [0] [0 0 0] [0] = c_3(f#(x)) Following rules are (at-least) weakly oriented: g#(x,c(y)) = [0 1 0] [0] [1 0 0] x + [0] [0 0 0] [1] >= [0 1 0] [0] [0 0 0] x + [0] [0 0 0] [1] = c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) = [0 0 1] [0] [0 1 0] x + [1] [0 0 0] [1] >= [0 0 1] [0] [0 1 0] x + [0] [0 0 0] [1] = c_5(f#(x)) **** Step 1.b:5.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(f#(x)) - Weak TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 1.b:5.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(f#(x)) - Weak TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:f#(s(x)) -> c_3(f#(x)) -->_1 f#(s(x)) -> c_3(f#(x)):1 2:W:g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) -->_2 g#(s(x),s(y)) -> c_5(f#(x)):3 -->_1 g#(s(x),s(y)) -> c_5(f#(x)):3 -->_2 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):2 -->_1 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):2 3:W:g#(s(x),s(y)) -> c_5(f#(x)) -->_1 f#(s(x)) -> c_3(f#(x)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) 3: g#(s(x),s(y)) -> c_5(f#(x)) 1: f#(s(x)) -> c_3(f#(x)) **** Step 1.b:5.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 1.b:5.b:1: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(f#(x)) - Weak DPs: f#(s(x)) -> c_3(f#(x)) - Weak TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2} by application of Pre({2}) = {1}. Here rules are labelled as follows: 1: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) 2: g#(s(x),s(y)) -> c_5(f#(x)) 3: f#(s(x)) -> c_3(f#(x)) *** Step 1.b:5.b:2: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) - Weak DPs: f#(s(x)) -> c_3(f#(x)) g#(s(x),s(y)) -> c_5(f#(x)) - Weak TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) -->_2 g#(s(x),s(y)) -> c_5(f#(x)):3 -->_1 g#(s(x),s(y)) -> c_5(f#(x)):3 -->_2 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):1 -->_1 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):1 2:W:f#(s(x)) -> c_3(f#(x)) -->_1 f#(s(x)) -> c_3(f#(x)):2 3:W:g#(s(x),s(y)) -> c_5(f#(x)) -->_1 f#(s(x)) -> c_3(f#(x)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: g#(s(x),s(y)) -> c_5(f#(x)) 2: f#(s(x)) -> c_3(f#(x)) *** Step 1.b:5.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) - Weak TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) The strictly oriented rules are moved into the weak component. **** Step 1.b:5.b:3.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) - Weak TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1,2} Following symbols are considered usable: {g,if,f#,g#,if#} TcT has computed the following interpretation: p(0) = [0] p(1) = [2] p(c) = [1] x1 + [5] p(f) = [8] x1 + [4] p(false) = [1] p(g) = [4] p(if) = [2] x2 + [1] x3 + [0] p(s) = [1] p(true) = [1] p(f#) = [1] x1 + [1] p(g#) = [4] x2 + [0] p(if#) = [1] x1 + [1] x3 + [1] p(c_1) = [8] p(c_2) = [8] p(c_3) = [2] p(c_4) = [1] x1 + [1] x2 + [0] p(c_5) = [2] p(c_6) = [1] p(c_7) = [1] Following rules are strictly oriented: g#(x,c(y)) = [4] y + [20] > [4] y + [16] = c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) Following rules are (at-least) weakly oriented: g(x,c(y)) = [4] >= [4] = g(x,g(s(c(y)),y)) g(s(x),s(y)) = [4] >= [3] = if(f(x),s(x),s(y)) if(false(),x,y) = [2] x + [1] y + [0] >= [1] y + [0] = y if(true(),x,y) = [2] x + [1] y + [0] >= [1] x + [0] = x **** Step 1.b:5.b:3.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) - Weak TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 1.b:5.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) - Weak TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) -->_2 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):1 -->_1 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) **** Step 1.b:5.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x - Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))